Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy
Determination of quantum yields for various processes (such as fluorescence and triplet formation) in dye-loaded light-scattering powdered samples is an open issue. Here, we report the testing of laser-induced optoacoustic spectroscopy (LIOAS) for the determination of fluorescence quantum yields of...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 09108caa a22011777a 4500 | ||
|---|---|---|---|
| 001 | PAPER-8760 | ||
| 003 | AR-BaUEN | ||
| 005 | 20241101092222.0 | ||
| 008 | 190411s2009 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-66249109280 | |
| 024 | 7 | |2 cas |a cellulose, 61991-22-8, 68073-05-2, 9004-34-6; rhodamine 6G, 989-38-8; Cellulose, 9004-34-6; Powders; Rhodamines; rhodamine 6G, 989-38-8 | |
| 030 | |a LANGD | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Tomasini, E.P. | |
| 245 | 1 | 0 | |a Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy |
| 260 | |c 2009 | ||
| 270 | 1 | 0 | |m Román, E. S.; INQUIMAE/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina; email: esr@qi.fcen.uba.ar |
| 504 | |a Wetzler, D.E., Garcia-Fresnadillo, D., Orellana, G., (2006) Phys. Chem. Chem. Phys, 8, pp. 2249-2256 | ||
| 504 | |a Anpo, M., Yamashira, H., Zhang, S.G., (1996) Curr. Opin. Solid State Mater. Sci, 1, pp. 630-635 | ||
| 504 | |a Grätzel, M., (2003) J. Photochem. Photobiol., C: Photochem. Rev, 4, pp. 145-153 | ||
| 504 | |a Hashimoto, S., (2003) J. Photochem. Photobiol., C: Photochem. Rev, 4, pp. 19-49 | ||
| 504 | |a Wrighton, M.S., Ginley, D.S., Morse, D.L., (1974) J. Phys. Chem, 78, pp. 2229-2233 | ||
| 504 | |a Liu, Y.S., de Mayo, P., Ware, W.R., (1993) J. Phys. Chem, 97, pp. 5995-6001 | ||
| 504 | |a Ruetten, S.A., Thomas, J.K., (1998) J. Phys. Chem. B, 102, pp. 598-606 | ||
| 504 | |a Shakespeare, T., Shakespeare, J., (2003) Col. Res. Appl, 28, pp. 4-14 | ||
| 504 | |a Gade, R., Kaden, U., (1990) J. Chem. Soc., Faraday Trans, 86, pp. 3707-3712 | ||
| 504 | |a Katalnikov, I.V., van der Auweraer, M., de Schryver, F.C., (1994) J. Photochem. Photobiol., A: Chem, 77, pp. 103-107 | ||
| 504 | |a Serpa, C., Schabauer, J., Piedade, A.P., Monteiro, C.J.P., Pereira, M.M., Douglas, P., Burrows, H.D., Arnaut, L.G., (2008) J. Am. Chem. Soc, 130, p. 2008 | ||
| 504 | |a Vieira Ferreira, L.F., Freixo, M.R., Garcia, A.R., Wilkinson, F., (1992) J. Chem. Soc., Faraday Trans, 88, pp. 15-22 | ||
| 504 | |a Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Roman, E., (1998) J. Chem. Soc., Faraday Trans, 94, pp. 419-425 | ||
| 504 | |a Rodraiguez, H.B., Lagorio, M.G., San Romaan, E., (2004) Photochem. Photobiol. Sci, 3, pp. 674-680 | ||
| 504 | |a Lagorio, M.G., San Román, E., Zeug, A., Zimmermann, J., Röder, B., (2001) Phys. Chem. Chem. Phys, 3, pp. 1524-1529 | ||
| 504 | |a Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., (2002) Phys. Chem. Chem. Phys, 4, pp. 224-231 | ||
| 504 | |a Rodriguez, H.B., Iriel, A., San Román, E., (2006) Photochem. Photobiol, 82, pp. 200-207 | ||
| 504 | |a Rodriguez, H.B., San Román, E., (2007) Photochem. Photobiol, 83, pp. 547-555 | ||
| 504 | |a Rodriguez, H.B., San Román, E., (2008) Ann. N.Y. Acad. Sci, 1130, pp. 247-252 | ||
| 504 | |a The fluorescence quantum yield, Φf, is defined for a single chromophore as the number of emitted photons per photon absorbed by the chromophore. In a real system, however, other chromophores and even the supporting material may contribute to the absorption and fluorescence can be partly reabsorbed by the sample. Therefore, the measurable quantity is the observed fluorescence quantum yield, Φobs, defined as the number of emitted photons leaving the sample per photon absorbed by any present species; Mirenda, M., Lagorio, M.G., San Román, E., (2004) Langmuir, 20, pp. 3690-3697 | ||
| 504 | |a Tam, A., Rev, C., (1986) Mod. Phys, 58, pp. 381-431 | ||
| 504 | |a Gensch, T., Viappiani, C., Braslavsky, S.E., Laser-induced time-resolved optoacoustic spectroscopy in solution (1999) Encyclopedia of spectroscopy and spectrometry, pp. 1124-1132. , Lindon, J. C, Tranter, G. E, Holmes J. L, Eds, Academic Press: London | ||
| 504 | |a Braslavsky, S.E., Heibel, G.E., (1992) Chem. Rev, 92, pp. 1381-1410 | ||
| 504 | |a Peters, K.S., (1986) Pure Appl. Chem, 58, pp. 1263-1265 | ||
| 504 | |a Rudzki Small, J., Foster, N., Amonette, J., Autry, T., (2000) Appl. Spectrosc, 54, pp. 1142-1150 | ||
| 504 | |a Webber, M. E.; MacDonald, T.; Pushkarsky, M.; Patel1, C. K. N.; Zhao, Y.; Marcillac, N.; Mitloehner, F. M. Meas. Sci. Technol. 2005, 16, 1547-1553; Webber, M.E., Pushkarsky, M.B., Patel, C.K.N., (2005) J. Appl. Phys, 97, p. 113101 | ||
| 504 | |a Patel, C.K.N., Tam, A.C., (1981) Rev. Mod. Phys, 53, pp. 517-550 | ||
| 504 | |a Nonell, S., Marti, C., Garcia-Moreno, I., Costela, A., Sastre, R., (2001) Appl. Phys. B: Laser Opt, 72, pp. 355-360 | ||
| 504 | |a Tam, A.C., (1990) Appl. Phys. Lett, 37, pp. 976-981 | ||
| 504 | |a Paltauf, G., Schmidt-Kloiber, H., (2000) J. Appl. Phys, 88, pp. 1624-1631 | ||
| 504 | |a Rothberg, L., (1987) J. Phys. Chem, 91, pp. 3467-3474 | ||
| 504 | |a Karabutov, A.A., Podymova, N.B., Letokhov, V.S., (1996) Appl. Phys. B: Laser Opt, 63, pp. 545-563 | ||
| 504 | |a Jabben, M., Schaffner, K., (1985) Biochim. Biophys. Acta, 809, pp. 445-451 | ||
| 504 | |a Mauzerall, D.C., (1990) Plant Physiol, 94, pp. 278-283 | ||
| 504 | |a Tam, A.C., Patel, C.K.N., (1979) Appl. Phys. Lett, 35, pp. 843-845 | ||
| 504 | |a Abbruzzetti, S., Viappiani, C., Murgida, D., Erra-Balsells, R., Bilmes, G., (1999) Chem. Phys. Lett, 304, pp. 167-172 | ||
| 504 | |a Almond, D.P., Patel, P.M., (1996) PhotothermalScience and Techniques, , Kluwer Academic Publishers: Dordrecht | ||
| 504 | |a Krautkrämer, J., Krautkrämer, H. Eds. Ultrasonic Testing of Materials, Springer-Verlag; Berlin, 1983. Data collected in Braslavsky, S. E.; Heihoff, K. Photothermal Methods. In Handbook of Organic Photochemistry, Scaiano, J. C., Ed.; CRC Press: Boca Raton, 1989; Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, , Wiley: New York | ||
| 504 | |a Kortüm, G., (1969) Reflectance Spectroscopy, , Springer-Verlag: New York | ||
| 504 | |a Iriel, A. Ph. D. Thesis, University of Buenos Aires, 2006; Viera Ferreira, L.F., Lemos, M.J., Reis, M.J., Botelho do Rego, A.M., (2000) Langmuir, 16, pp. 5673-5680 | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a Determination of quantum yields for various processes (such as fluorescence and triplet formation) in dye-loaded light-scattering powdered samples is an open issue. Here, we report the testing of laser-induced optoacoustic spectroscopy (LIOAS) for the determination of fluorescence quantum yields of Rhodamine 101 and Rhodamine 6G adsorbed at various loadings on microgranular cellulose powder. The results of the LIOAS experiments are consistent with those from the method developed in one of our laboratories based on the measurement of apparent reflectance using an integrating sphere [Mirenda, M.; Lagorio, M. G.; San Roman, E. Langmuir 2004,20,3690-3697], which allows the simultaneous calculation of fluorescence quantum yield and reflectance devoid of fluorescence artifacts. Criteria to quantify overall errors and detect outlying values are developed. The theory underlying the application of LIOAS to light-scattering samples and experimental details are presented. © 2009 American Chemical Society. |l eng | |
| 593 | |a INQUIMAE/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina | ||
| 593 | |a Max-Planck-Institut fur Bioanorganische Chemie, Postfach 101365, D 45413 Mülheim an der Ruhr, Germany | ||
| 650 | 1 | 7 | |2 spines |a LASER |
| 690 | 1 | 0 | |a CELLULOSE POWDER |
| 690 | 1 | 0 | |a FLUORESCENCE QUANTUM YIELD |
| 690 | 1 | 0 | |a INTEGRATING SPHERES |
| 690 | 1 | 0 | |a LANGMUIR |
| 690 | 1 | 0 | |a LASER-INDUCED OPTOACOUSTIC SPECTROSCOPY |
| 690 | 1 | 0 | |a POWDERED SAMPLES |
| 690 | 1 | 0 | |a RHODAMINE 6G |
| 690 | 1 | 0 | |a LASER SPECTROSCOPY |
| 690 | 1 | 0 | |a LIGHT SCATTERING |
| 690 | 1 | 0 | |a QUANTUM YIELD |
| 690 | 1 | 0 | |a REFLECTION |
| 690 | 1 | 0 | |a SCATTERING |
| 690 | 1 | 0 | |a FLUORESCENCE |
| 690 | 1 | 0 | |a CELLULOSE |
| 690 | 1 | 0 | |a RHODAMINE |
| 690 | 1 | 0 | |a RHODAMINE 6G |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a FLUORESCENCE |
| 690 | 1 | 0 | |a METHODOLOGY |
| 690 | 1 | 0 | |a POWDER |
| 690 | 1 | 0 | |a SPECTROSCOPY |
| 690 | 1 | 0 | |a CELLULOSE |
| 690 | 1 | 0 | |a FLUORESCENCE |
| 690 | 1 | 0 | |a LASERS |
| 690 | 1 | 0 | |a POWDERS |
| 690 | 1 | 0 | |a RHODAMINES |
| 690 | 1 | 0 | |a SPECTRUM ANALYSIS |
| 700 | 1 | |a Román, E.S. | |
| 700 | 1 | |a Braslavsky, Silvia Elsa | |
| 773 | 0 | |d 2009 |g v. 25 |h pp. 5861-5868 |k n. 10 |p Langmuir |x 07437463 |t Langmuir | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-66249109280&doi=10.1021%2fla803492k&partnerID=40&md5=a01083c7187e9f8979aa8ae04aac7d3f |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/la803492k |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_07437463_v25_n10_p5861_Tomasini |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v25_n10_p5861_Tomasini |y Registro en la Biblioteca Digital |
| 961 | |a paper_07437463_v25_n10_p5861_Tomasini |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 69713 | ||