Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.)

The spectroscopic changes in reflectance and fluorescence caused by phosphorus (P) starvation in Brassica napus L. young plants were evaluated. P deficiency produced an important decrease in reflectance values between 500 and 650 nm for both intact leaves and cotyledons. Furthermore, cotyledons unde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yaryura, P.
Otros Autores: Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14700caa a22011777a 4500
001 PAPER-8736
003 AR-BaUEN
005 20230518203833.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-65549089644 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ZAPFA 
100 1 |a Yaryura, P. 
245 1 0 |a Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.) 
260 |c 2009 
270 1 0 |m Lagorio, M. G.; INQUIMAE/Dpto. de Química Inorgánica, Analítica y Qca. Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II 1er piso, C1428EHA, Buenos Aires, Argentina; email: mgl@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agati, G., Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength (1998) Pure and Applied Optics (Print Edition) (United Kingdom), 7 (4), pp. 797-807. , PII S0963965998889757 
504 |a Agati, G., Fusi, F., Mazzinghi, P., Lipucci Di Paola, M., A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves (1993) Journal of Photochemistry and Photobiology B: Biology, 17 (2), pp. 163-171. , DOI 10.1016/1011-1344(93)80009-X 
504 |a Agati, G., Cerovic, Z.G., Moya, I., The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem i contribution to the 735 nm fluorescence band (2000) Photochem. Photobiol., 72, pp. 75-84 
504 |a (1992) Nutritional Disorders of Plants., , Bergmannn, W. ed. Development, Visual and Analytical Diagnosis, Gustav Fischer Verlag Jena. New York 
504 |a Chalker-Scott, L., Environmental significance of anthocyanins in plant stress responses (1999) Photochemistry and Photobiology, 70 (1), pp. 1-9 
504 |a Chow, W.S., Osmond, C.B., Ke Huang, L., Photosystem II function and herbicide binding sites during photoinhibition of spinach chloroplasts in-vivo and in-vitro (1989) Photosynth. Res., 21, pp. 17-26 
504 |a Close, D.C., Beadle, C.L., The Ecophysiology of Foliar Anthocyanin (2003) Botanical Review, 69 (2), pp. 149-161 
504 |a Cordon, G.B., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochemical and Photobiological Sciences, 5 (8), pp. 735-740. , DOI 10.1039/b517610g 
504 |a Deo, P.M., Biswal, B., Response of senescing cotyledons of clusterbean to water stress in moderate and low light: Possible photoprotective role of -carotene (2001) Physiologia Plantarum, 112 (1), pp. 47-54. , DOI 10.1034/j.1399-3054.2001.1120107.x 
504 |a Ghosh, S., Mahoney, S.R., Penterman, J.N., Peirson, D., Dumbroff, E.B., Ultrastructural and biochemical changes in chloroplasts during Brassica napus senescence (2001) Plant Physiology and Biochemistry, 39 (9), pp. 777-784. , DOI 10.1016/S0981-9428(01)01296-7 
504 |a Gitelson, A., Merzlyak, M.N., Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves (1994) Journal of Photochemistry and Photobiology B: Biology, 22 (3), pp. 247-252. , DOI 10.1016/1011-1344(93)06963-4 
504 |a Grant, C.A., Bailey, L.D., Fertility management in canola production (1993) Can. J. Plant Sci., 73, pp. 651-670 
504 |a Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N., How do plants respond to nutrient shortage by biomass allocation? (2006) Trends Plant Sci., 11, pp. 610-617 
504 |a Iglesias, A.A., Plaxton, W.C., Podesta, F.E., The role of inorganic phosphate in the regulation of C4 photosynthesis (1993) Photosynth. Res., 35, pp. 205-211 
504 |a Havaux, M., Characterization of thermal damage to the photosynthetic electron transport system in potato leaves (1993) Plant Science, 94 (1-2), pp. 19-33 
504 |a Jiang, C., Gao, X., Liao, L., Harberd, N.P., Fu, X., Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis (2007) Plant Physiology, 145 (4), pp. 1460-1470. , http://www.plantphysiol.org/cgi/reprint/145/4/1460, DOI 10.1104/pp.107.103788 
504 |a Kościelniak, J., Biesaga-Kościelniak, J., Effects of exposure to short periods of suboptimal temperature during chill (5°C) on gas exchange and chlorophyll fluorescence in maize seedlings (Zea mays L.) (1999) J. Agron. Crop Sci., 183, pp. 231-241 
504 |a Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Roman, E., Modeling of fluorescence quantum yields of supported dyes: Aluminium carboxyphthalocyanine on cellulose (1998) Journal of the Chemical Society - Faraday Transactions, 94 (3), pp. 419-425 
504 |a Lang, M., Strober, F., Lichtenthaler, H.K., Fluorescence emission spectra of plant leaves and plant constituents (1991) Radiat. Environ. Biophys., 30, pp. 333-347 
504 |a Einig, W., Mertz, A., Hampp, R., Growth rate, photosynthetic activity, and leaf development of Brazil pine seedlings (Araucaria angustifolia [Bert.] O. Ktze.) (1999) Plant Ecology, 143 (1), pp. 23-28. , DOI 10.1023/A:1009835720660 
504 |a Buschmann, C., Lichtenthaler, H.K., Correlation of reflectance and chlorophyll fluorescence signatures of healthy and damaged forest trees (1988) Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 3, pp. 1339-1342 
504 |a Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., Solovchenko, A.E., Pogosyan, S.I., Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments (2003) Russian Journal of Plant Physiology, 50 (5), pp. 704-710. , DOI 10.1023/A:1025608728405 
504 |a Mino, N., Saito, G., Ogawa, S., Satellite monitoring of changes in improved grassland management (1998) International Journal of Remote Sensing, 19 (3), pp. 439-452 
504 |a Mitchell, D.T., Allsopp, N., Changes in the phosphorus composition of seeds of Hakea sericea (Proteaceae) during germination under low phosphorus conditions (1984) New Phytol., 96, pp. 239-247 
504 |a Moreira, P.F., Giestas, L., Yihwa, C., Vautier-Giongo, C., Quina, F.H., MacAnita, A.L., Lima, J.C., Ground and excited-state proton transfer in anthocyanins: From weak acids to superphotoacids (2003) J. Phys. Chem. A, 107, pp. 4203-4209 
504 |a Murashige, T., Skoog, F., A revised medium for rapid growth and bioassay with tissue culture (1962) Physiol. Plant, 15, pp. 473-497 
504 |a Neill, S., Gould, K.S., Optical properties of leaves in relation to anthocyanin concentration and distribution (1999) Canadian Journal of Botany, 77 (12), pp. 1777-1782 
504 |a Gould, K.S., Anthocyanins in leaves: Light attenuators or antioxidants? (2003) Functional Plant Biology, 30 (8), pp. 865-873. , DOI 10.1071/FP03118 
504 |a Neuner, G., Larcher, W., Determination of differences in chilling susceptibility of two soybean varieties by means of in vivo chlorophyll fluorescence measurements (1990) J. Agron. Crop Sci., 164, pp. 73-80 
504 |a Papageorgiou, G.C., Chlorophyll a fluorescence: A signature of photosynthesis (2004) Advances in Photosynthesis and Respiration, Volume 19, pp. 583-661. , In. G. C. Papageorgiou. Govindjee. eds. pp. Springer. Dordrecht 
504 |a Pfundel, E., Estimating the contribution of Photosystem i to total leaf chlorophyll fluorescence (1998) Photosynthesis Research, 56 (2), pp. 185-195. , DOI 10.1023/A:1006032804606 
504 |a Plesnicar, M., Kastori, R., Petrovic, N., Pankovic, D., Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition (1994) Journal of Experimental Botany, 45 (276), pp. 919-924 
504 |a Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochemical and Photobiological Sciences, 3 (11-12), pp. 1063-1066. , DOI 10.1039/b406525e 
504 |a Rapacz, M., Tyrka, M., Kaczmarek, W., Gut, M., Wolanin, B., Mikuski, W., Photosynthetic acclimation to cold as a potencial physiological marker of winter barley freezing tolerance assessed under variable winter environment (2008) J. Agron. Crop Sci., 194, pp. 61-71 
504 |a Ratinam, M., Abd El Moneim, A.M., Saxena, M.C., Assessment of sensitivity to frost in ochrus chickling (Lathyrus ochrus (L.) D.C.) by chlorophyll fluorescence analyses (1994) J. Agron. Crop Sci., 173, pp. 338-344 
504 |a Rodriguez, G.E., Santa María, G.E., Pomar, M.C., Phosphorus deficiency affects the early development of wheat plants (1994) J. Agron. Crop Sci., 173, pp. 69-72 
504 |a Rubio, G., Lynch, J.P., Compensation among root classes in Phaseolus vulgaris L. (2007) Plant and Soil, 290 (1-2), pp. 307-321. , DOI 10.1007/s11104-006-9163-7 
504 |a Rubio, G., Liao, H., Yan, X., Lynch, J.P., Topsoil foraging and its role in plant competitiveness for phosphorus in common bean (2003) Crop Science, 43 (2), pp. 598-607 
504 |a Shi, R., Zhuang, D., Zheng, N., (2006) Simulated Hyperspectral Data Analysis Using Continuous Removal: Case Study on Leaf Chlorophyll Prediction., , ICSP2006 Proceedings 4. DOI 
504 |a Sims, D.A., Gamon, J.A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages (2002) Remote Sensing of Environ., 81, pp. 337-354 
504 |a Slaton, M.R., Hunt Jr., E.R., Smith, W.K., Estimating near-infrared leaf reflectance from leaf structural characteristics (2001) American Journal of Botany, 88 (2), pp. 278-284 
504 |a Subhash, N., Wenzel, O., Lichtenthaler, H.K., Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants (1999) Remote Sensing of Environment, 69 (3), pp. 215-223. , DOI 10.1016/S0034-4257(99)00029-2, PII S0034425799000292 
504 |a Trull, M.C., Guiltinan, M.J., Lynch, J.P., Deikman, J., The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation (1997) Plant, Cell and Environment, 20 (1), pp. 85-92 
504 |a Vance, C.P., Uhde-Stone, C., Allan, D.L., Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource (2003) New Phytologist, 157 (3), pp. 423-447. , DOI 10.1046/j.1469-8137.2003.00695.x 
504 |a Vertucci, C.W., Ellenson, J.L., Leopold, A.C., Chlorophyll fluorescence characteristics associated with hydration level in pea cotyledons (1985) Plant Physiol., 79, pp. 248-252 
504 |a Wendlandt, W., Hecht, H.G., (1966) Reflectance Spectroscopy., , Interscience. New York 
504 |a Xu, H.X., Weng, X.Y., Yang, Y., Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants (2007) Russian Journal of Plant Physiology, 54 (6), pp. 741-748. , DOI 10.1134/S1021443707060040 
504 |a Yusufov, A.G., Alieva, Z.M., Initial stages of morphogenetic changes in detached cotyledons, hypocotyls, and leaves of kidney beans and eggplants under salinity conditions (2002) Russian Journal of Plant Physiology, 49 (6), pp. 789-791. , DOI 10.1023/A:1020917713313 
504 |a Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation (2000) Remote Sensing of Environment, 74 (3), pp. 582-595. , DOI 10.1016/S0034-4257(00)00148-6, PII S0034425700001486 
520 3 |a The spectroscopic changes in reflectance and fluorescence caused by phosphorus (P) starvation in Brassica napus L. young plants were evaluated. P deficiency produced an important decrease in reflectance values between 500 and 650 nm for both intact leaves and cotyledons. Furthermore, cotyledons under P deficiency showed a Chl-F ratio in the red/far-red region (Fred/ Ffar-red) lower than that of non-stressed plants (1.91 and 2.89 respectively). As minimal differences in Fred/Ffar-red were detected in leaves, P deficiencies may be better perceived by measuring changes in Chl-F emission in cotyledons than in leaves. Stressed cotyledons also showed different emission spectra in the blue green (maxima at 470 and 560 nm) from those of non-stressed cotyledons. The results are explained in terms of higher anthocyanin and chlorophyll contents and of damage to photosystem II. We evaluate that measuring variations in fluorescence and reflectance data may be useful to detect early damages induced by P stress. © 2009 Blackwell Verlag.  |l eng 
593 |a INQUIMAE/Dpto. de Química Inorgánica, Analítica y Qca. Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II 1er piso, C1428EHA, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Bioquímicas y Fisiológicas (IBYF-CONICET), Facultad de Agronomía, UBA (FAUBA), Buenos Aires, Argentina 
593 |a INQUIMAE/Dpto. de Química Inorgánica, Analítica y Qca Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a COTYLEDONS 
690 1 0 |a FLUORESCENCE 
690 1 0 |a OILSEED RAPE 
690 1 0 |a PHOSPHORUS DEFICIENCY 
690 1 0 |a RE-ABSORPTION 
690 1 0 |a REFLECTANCE 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a DICOTYLEDON 
690 1 0 |a FLUORESCENCE 
690 1 0 |a NUTRIENT LIMITATION 
690 1 0 |a PHOSPHORUS 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a REFLECTANCE 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a STARVATION 
690 1 0 |a BRASSICA NAPUS 
700 1 |a Cordon, G. 
700 1 |a Leon, M. 
700 1 |a Kerber, N. 
700 1 |a Pucheu, N. 
700 1 |a Rubio, G. 
700 1 |a García, A. 
700 1 |a Lagorio, M.G. 
773 0 |d 2009  |g v. 195  |h pp. 186-196  |k n. 3  |p J. Agron. Crop. Sci.  |x 09312250  |t Journal of Agronomy and Crop Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-65549089644&doi=10.1111%2fj.1439-037X.2008.00359.x&partnerID=40&md5=27d50d3d1b08dda2c1b7e048e494f5ed  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1439-037X.2008.00359.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09312250_v195_n3_p186_Yaryura  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09312250_v195_n3_p186_Yaryura  |y Registro en la Biblioteca Digital 
961 |a paper_09312250_v195_n3_p186_Yaryura  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69689