Waves and turbulence in magnetohydrodynamic direct numerical simulations

Direct numerical simulations of the incompressible MHD equations with a uniform background magnetic field in a turbulent regime are performed to assess the relative importance of broadband turbulent fluctuations and wavelike fluctuations that are associated with an Alfv́n wave dispersion relation. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dmitruk, P.
Otros Autores: Matthaeus, W.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07896caa a22009257a 4500
001 PAPER-8641
003 AR-BaUEN
005 20230518203827.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-67650471409 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PHPAE 
100 1 |a Dmitruk, P. 
245 1 0 |a Waves and turbulence in magnetohydrodynamic direct numerical simulations 
260 |c 2009 
270 1 0 |m Dmitruk, P.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a For compressible MHD more types of waves appear, the fast and slow magnetoacoustic waves, including velocity fluctuations parallel to wave vectors, i.e., vk k0; Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 6011. , 0148-0227 10.1029/JA087iA08p06011, DOI: 10.1029/JA087iA08p06011 
504 |a Monin, A.S., Yaglom, A.M., (1971) Statistical Fluid Mechanics, 1, p. 769. , MIT, Cambridge, Vol 
504 |a Belcher, J.W., Davis Jr., L., (1971) J. Geophys. Res., 76, p. 3534. , 0148-0227 10.1029/JA076i016p03534, DOI: 10.1029/JA076i016p03534 
504 |a Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F., Ness, N.F., (1982) Sol. Phys., 78, p. 373. , 0038-0938,. 10.1007/BF00151617 
504 |a Roberts, D.A., Goldstein, M.L., Klein, L.W., Matthaeus, W.H., (1987) J. Geophys. Res., 92, p. 12023. , DOI: 10.1029/JA092iA11p12023 
504 |a Dobrowolny, M., Mangeney, A., Veltri, P., (1980) Phys. Rev. Lett., 45, p. 144. , 0031-9007,. 10.1103/PhysRevLett.45.144 
504 |a The condition for interaction of two Alfv́nic wave packets, corresponding to "opposite sense of correlation" of v and b, is sometimes described as "opposite directions of propagation." This is actually misleading and not fully correct For example, the same condition applies in a two dimensional geometry perpendicular to a uniform mean magnetic field, even though there is, for this case, no propagation along the mean field. Furthermore, the condition for interaction of the packets also applies when there is no mean magnetic field and, therefore, no propagation; Kraichnan, R., (1965) Phys. Fluids, 8, p. 1385. , 10.1063/1.1761412 
504 |a Schwartz, S.J., (1977) Mon. Not. R. Astron. Soc., 178, p. 399. , 0035-8711 
504 |a Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A., (2000) J. Plasma Phys., 63, p. 447. , 0022-3778,. 10.1017/S0022377899008284 
504 |a Zhou, Y., Matthaeus, W.H., Dmitruk, P., (2004) Rev. Mod. Phys., 76, p. 1015. , 0034-6861,. 10.1103/RevModPhys.76.1015 
504 |a Tsytovich, V.N., (1972) An Introduction to the Theory of Plasma Turbulence 1st Ed., p. 1. , Pergamon, New York 
504 |a Dmitruk, P., Matthaeus, W.H., (2007) Phys. Rev. e, 76, p. 036305. , 1063-651X,. 10.1103/PhysRevE.76.036305 
504 |a Dmitruk, P., Matthaeus, W.H., Lanzerotti, L., (2004) Geophys. Res. Lett., 31, p. 21805. , 0094-8276 10.1029/2004GL021119, DOI: 10.1029/2004GL021119 
504 |a Tennekes, H., (1975) J. Fluid Mech., 67, p. 561. , 0022-1120,. 10.1017/S0022112075000468 
504 |a Chen, S.Y., Kraichnan, R.H., (1989) Phys. Fluids A, 1, p. 2019. , 10.1063/1.857475 
504 |a Bulsara, A.R., Gammaitoni, L., (1996) Phys. Today, 49, p. 39. , 0031-9228 
504 |a Shebalin, J., Matthaeus, W.H., Montgomery, D.C., (1983) J. Plasma Phys., 29, p. 525. , 0022-3778,. 10.1017/S0022377800000933 
504 |a Oughton, S., Priest, E.R., Matthaeus, W.H., (1994) J. Fluid Mech., 280, p. 95. , 0022-1120,. 10.1017/S0022112094002867 
504 |a Robinson, D.C., Rusbridge, M.G., (1971) Phys. Fluids, 14, p. 2499. , 10.1063/1.1693359 
504 |a Bieber, J.W., Wanner, W., Matthaeus, W.H., (1996) J. Geophys. Res., 101, p. 2511. , 0148-0227 10.1029/95JA02588, DOI: 10.1029/95JA02588 
504 |a Alexakis, A., Bigot, B., Politano, H., Galtier, S., (2007) Phys. Rev. e, 76, p. 056313. , 1063-651X,. 10.1103/PhysRevE.76.056313 
504 |a Del Zanna, L., Velli, M., (2002) Adv. Space Res., 30, p. 471. , 0273-1177,. 10.1016/S0273-1177(02)00320-4 
504 |a Chandran, B.D.G., (2005) Phys. Rev. Lett., 95, p. 265004. , 0031-9007,. 10.1103/PhysRevLett.95.265004 
504 |a Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, D.G., Dennis, B.R., Larosa, T.N., Winglee, R.M., Tsuneta, S., (1997) J. Geophys. Res., 102, p. 14631. , 0148-0227 10.1029/97JA00976, DOI: 10.1029/97JA00976 
520 3 |a Direct numerical simulations of the incompressible MHD equations with a uniform background magnetic field in a turbulent regime are performed to assess the relative importance of broadband turbulent fluctuations and wavelike fluctuations that are associated with an Alfv́n wave dispersion relation. The focus is on properties of the fluctuations in the frequency domain. Eulerian frequency spectra and individual wave number mode frequency spectra show the presence of peaks at the corresponding Alfv́n wave frequencies for full nonlinear simulations in a turbulent regime. The peaks are however broad and their power content is compared to the power in the full spectrum as well as a signal to noise ratio is defined and quantified for different values of the background magnetic field. The ratio of power in Alfv́n waves to the power in the rest of the spectrum is also quantified and is found to be small for different values of the mean magnetic field. Individual modes in time show a much more complex behavior than that could be expected for linear solutions. Also, nonlinear transfer of energy is evidenced by the existence of peaks at wave numbers perpendicular to the mean magnetic field. Implications are discussed for theories of strong turbulence as well as perturbation theories that assume the leading order behavior is that of propagating Alfv́n waves. © 2009 American Institute of Physics.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, United States 
690 1 0 |a COMPLEX BEHAVIOR 
690 1 0 |a EULERIAN 
690 1 0 |a FREQUENCY DOMAINS 
690 1 0 |a FREQUENCY SPECTRA 
690 1 0 |a FULL SPECTRUM 
690 1 0 |a LEADING ORDERS 
690 1 0 |a LINEAR SOLUTION 
690 1 0 |a MEAN MAGNETIC FIELD 
690 1 0 |a MHD EQUATIONS 
690 1 0 |a N-WAVES 
690 1 0 |a NONLINEAR SIMULATIONS 
690 1 0 |a NONLINEAR TRANSFER 
690 1 0 |a PERTURBATION THEORY 
690 1 0 |a RELATIVE IMPORTANCE 
690 1 0 |a STRONG TURBULENCE 
690 1 0 |a TURBULENT FLUCTUATION 
690 1 0 |a TURBULENT REGIME 
690 1 0 |a WAVE NUMBER MODES 
690 1 0 |a WAVE NUMBERS 
690 1 0 |a DIRECT NUMERICAL SIMULATION 
690 1 0 |a MAGNETIC FIELDS 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a SIGNAL TO NOISE RATIO 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TURBULENCE 
690 1 0 |a WAVE EQUATIONS 
690 1 0 |a POWER SPECTRUM 
700 1 |a Matthaeus, W.H. 
773 0 |d 2009  |g v. 16  |k n. 6  |p Phys. Plasmas  |x 1070664X  |w (AR-BaUEN)CENRE-6479  |t Physics of Plasmas 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-67650471409&doi=10.1063%2f1.3148335&partnerID=40&md5=8269a0c55ccd893d36d35ca083b646fd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1063/1.3148335  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1070664X_v16_n6_p_Dmitruk  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v16_n6_p_Dmitruk  |y Registro en la Biblioteca Digital 
961 |a paper_1070664X_v16_n6_p_Dmitruk  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69594