Completeness results for memory logics

Memory logics are a family of modal logics in which standard relational structures are augmented with data structures and additional operations to modify and query these structures. In this paper we present sound and complete axiomatizations for some members of this family. We analyze the use of nom...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Areces, C.
Otros Autores: Figueira, S., Mera, S.
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05118caa a22006017a 4500
001 PAPER-8640
003 AR-BaUEN
005 20230518203827.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-67650458248 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Areces, C. 
245 1 0 |a Completeness results for memory logics 
260 |c 2009 
270 1 0 |m Areces, C.; INRIA Nancy Grand EstFrance 
506 |2 openaire  |e Política editorial 
504 |a Alur, R., Henzinger, T.: A really temporal logic. Journal of the 164-169(1989); Areces, C., Hybrid logics: The old and the new (2007) Proceedings of LogKCA, , San Sebastian, Spain 
504 |a Areces, C., Figueira, D., Figueira, S., Mera, S., Expressive power and decidability for memory logics (2008) LNCS, 5110, pp. 56-68. , Hodges, W, de Queiroz, R, eds, Logic, Language, Information and Computation, Springer, Heidelberg 
504 |a Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability for memory logics. Journal of Computer and System Sciences (submitted, 2008); Extended version of [3]; Areces, C., ten Cate, B., Hybrid logics (2006) Handbook of Modal Logics, , Blackburn, P, Wolter, F, van Benthem, J, eds, Elsevier, Amsterdam 
504 |a Blackburn, P., Representation, reasoning, and relational structures: A hybrid logic manifesto (2000) Logic Journal of the IGPL, 8 (3), pp. 339-625 
504 |a Blackburn, P., de Rijke, M., Venema, Y., (2001) Modal Logic, , Cambridge University Press, Cambridge 
504 |a Blackburn, P., Tzakova, M., Hybrid completeness (1998) Logic Journal of the IGPL, 6 (4), pp. 625-650 
504 |a Gerbrandy, J., (2001) Bisimulations on Planet Kripke, , PhD thesis, University of Amsterdam, ILLC Dissertation series DS, 1999 
504 |a Harel, E., Lichtenstein, O., Pnueli, A., Explicit clock temporal logic (1990) Proceedings of LICS 1990, pp. 402-413 
504 |a Henzinger, T., Half-order modal logic: How to prove real-time properties (1990) Proceedings of the Ninth Annual Symposium on Principles of Distributed Computing, pp. 281-296. , ACM Press, New York 
504 |a Lutz, C., (2002) The complexity of reasoning with concrete domains, , PhD thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany 
504 |a Plaza, J., Logics of public communications (1989) 4th International Symposium on Methodologies for Intelligent Systems, pp. 201-216 
504 |a van Benthem, J., Logics for information update (2001) TARK 2001: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 51-67. , Morgan Kaufmann Publishers Inc, San Francisco 
504 |a van Benthem, J., van Eijck, J., Kooi, B., Logics of communication and change (2006) Information and Computation, 204 (11), pp. 1620-1662 
504 |a van Ditmarsch, H., van der Hoek, W., Kooi, B., (2007) Dynamic Epistemic Logic, , Kluwer academic publishers, Dordrecht 
520 3 |a Memory logics are a family of modal logics in which standard relational structures are augmented with data structures and additional operations to modify and query these structures. In this paper we present sound and complete axiomatizations for some members of this family. We analyze the use of nominals to achieve completeness, and present one example in which they can be avoided. © Springer-Verlag Berlin Heidelberg 2009.  |l eng 
536 |a Detalles de la financiación: Fundación YPF 
536 |a Detalles de la financiación: Sergio Mera is partially supported by a grant of Fundación YPF. 
593 |a INRIA Nancy Grand Est, France 
593 |a Departamento de Computación, FCEyN, UBA, Argentina 
593 |a CONICET, Argentina 
690 1 0 |a COMPLETE AXIOMATIZATIONS 
690 1 0 |a MODAL LOGIC 
690 1 0 |a RELATIONAL STRUCTURES 
690 1 0 |a DATA STRUCTURES 
690 1 0 |a COMPUTER SCIENCE 
700 1 |a Figueira, S. 
700 1 |a Mera, S. 
711 2 |c Deerfield Beach, FL  |d 3 January 2009 through 6 March 2009  |g Código de la conferencia: 76612 
773 0 |d 2009  |g v. 5407 LNCS  |h pp. 16-30  |p Lect. Notes Comput. Sci.  |n Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  |x 03029743  |w (AR-BaUEN)CENRE-983  |z 3540926860  |z 9783540926863  |t International Symposium on Logical Foundations of Computer Science, LFCS 2009 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-67650458248&doi=10.1007%2f978-3-540-92687-0_2&partnerID=40&md5=02ddf8b0bf52e9756661bfce7f77eba8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-540-92687-0_2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03029743_v5407LNCS_n_p16_Areces  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5407LNCS_n_p16_Areces  |y Registro en la Biblioteca Digital 
961 |a paper_03029743_v5407LNCS_n_p16_Areces  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69593