Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks

We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics (LAMHD) α model reproduces well both the large-scale and the small-scale properties of turbulent flows; in particular, it displays no increased (superfilt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pietarila Graham, J.
Otros Autores: Mininni, P.D, Pouquet, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11418caa a22013817a 4500
001 PAPER-8587
003 AR-BaUEN
005 20230518203823.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-68949103551 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLEEE 
100 1 |a Pietarila Graham, J. 
245 1 0 |a Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks 
260 |c 2009 
270 1 0 |m Pietarila Graham, J.; Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 
506 |2 openaire  |e Política editorial 
504 |a Meneveau, C., Katz, J., (2000) Annu. Rev. Fluid Mech., 32, p. 1. , 10.1146/annurev.fluid.32.1.1 
504 |a Pouquet, A., Frisch, U., Leorat, J., (1976) J. Fluid Mech., 77, p. 321. , 10.1017/S0022112076002140 
504 |a Yoshizawa, A., (1987) Phys. Fluids, 30, p. 1089. , 10.1063/1.866306 
504 |a Chollet, J.-P., Lesieur, M., (1981) J. Atmos. Sci., 38, p. 2747. , 10.1175/1520-0469(1981)038<2747:POSSOT>2.0.CO;2 
504 |a Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., (2008) Phys. Rev. e, 78, p. 026310. , 10.1103/PhysRevE.78.026310 
504 |a Alexakis, A., Mininni, P.D., Pouquet, A., (2005) Phys. Rev. e, 72, p. 046301. , 10.1103/PhysRevE.72.046301 
504 |a Mininni, P., Alexakis, A., Pouquet, A., (2005) Phys. Rev. e, 72, p. 046302. , 10.1103/PhysRevE.72.046302 
504 |a Zhou, Y., Schilling, O., Ghosh, S., (2002) Phys. Rev. e, 66, p. 026309. , 10.1103/PhysRevE.66.026309 
504 |a Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A., (2000) J. Plasma Phys., 63, p. 447. , 10.1017/S0022377899008284 
504 |a Goldreich, P., Sridhar, S., (1995) Astrophys. J., 438, p. 763. , 10.1086/175121 
504 |a Iroshnikov, P.S., (1964) Sov. Astron., 7, p. 566 
504 |a Kraichnan, R.H., (1965) Phys. Fluids, 8, p. 1385. , 10.1063/1.1761412 
504 |a Mason, J., Cattaneo, F., Boldyrev, S., (2008) Phys. Rev. e, 77, p. 036403. , 10.1103/PhysRevE.77.036403 
504 |a Mininni, P.D., Pouquet, A., (2007) Phys. Rev. Lett., 99, p. 254502. , 10.1103/PhysRevLett.99.254502 
504 |a Pouquet, A., Mininni, P., Montgomery, D., Alexakis, A., (2008) Dynamics of the Small Scales in Magnetohydrodynamic Turbulence, 4, pp. 305-312. , Proceedings of the IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya University, Nagoya, Japan, 2006, edited by Yukio Kaneda (Springer-Verlag, Berlin 
504 |a Agullo, O., Müller, W.-C., Knaepen, B., Carati, D., (2001) Phys. Plasmas, 8, p. 3502. , 10.1063/1.1372337 
504 |a Theobald, M.L., Fox, P.A., Sofia, S., (1994) Phys. Plasmas, 1, p. 3016. , 10.1063/1.870542 
504 |a Haugen, N.E.L., Brandenburg, A., (2006) Phys. Fluids, 18, p. 075106. , 10.1063/1.2222399 
504 |a Müller, W.-C., Carati, D., (2002) Phys. Plasmas, 9, p. 824. , 10.1063/1.1448498 
504 |a Longcope, D.W., Sudan, R.N., (1991) Phys. Fluids B, 3, p. 1945. , 10.1063/1.859663 
504 |a Knaepen, B., Moin, P., (2004) Phys. Fluids, 16, p. 1255. , 10.1063/1.1651484 
504 |a Ponty, Y., Mininni, P.D., Montgomery, D.C., Pinton, J.-F., Politano, H., Pouquet, A., (2005) Phys. Rev. Lett., 94, p. 164502. , 10.1103/PhysRevLett.94.164502 
504 |a Ponty, Y., Politano, H., Pinton, J.-F., (2004) Phys. Rev. Lett., 92, p. 144503. , 10.1103/PhysRevLett.92.144503 
504 |a Holm, D.D., (2002) Physica D, 170, p. 253. , 10.1016/S0167-2789(02)00552-3 
504 |a Holm, D.D., (2002) Chaos, 12, p. 518. , 10.1063/1.1460941 
504 |a Montgomery, D.C., Pouquet, A., (2002) Phys. Fluids, 14, p. 3365. , 10.1063/1.1501542 
504 |a Mininni, P.D., Montgomery, D.C., Pouquet, A.G., (2005) Phys. Fluids, 17, p. 035112. , 10.1063/1.1863260 
504 |a Graham, J.P., Mininni, P.D., Pouquet, A., (2005) Phys. Rev. e, 72, p. 045301. , 10.1103/PhysRevE.72.045301 
504 |a Pietarila Graham, J., Holm, D.D., Mininni, P., Pouquet, A., (2006) Phys. Fluids, 18, p. 045106. , 10.1063/1.2194966 
504 |a Mininni, P.D., Montgomery, D.C., Pouquet, A., (2005) Phys. Rev. e, 71, p. 046304. , 10.1103/PhysRevE.71.046304 
504 |a Mininni, P.D., (2006) Phys. Plasmas, 13, p. 056502. , 10.1063/1.2179055 
504 |a Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S., (2005) Proc. R. Soc. London, Ser. A, 461, p. 629. , 10.1098/rspa.2004.1373 
504 |a Pietarila Graham, J., Holm, D.D., Mininni, P.D., Pouquet, A., (2007) Phys. Rev. e, 76, p. 056310. , 10.1103/PhysRevE.76.056310 
504 |a Mininni, P.D., Pouquet, A., Sullivan, P., (2008) Two Examples from Geophysical and Astrophysical Turbulence on Modeling Disparate Scale Interactions, pp. 338-381. , Computational Methods for the Atmosphere and the Oceans, edited by Roger Temam and Joe Tribbia (Elsevier, North-Holland 
504 |a Gómez, D.O., Mininni, P.D., Dmitruk, P., (2005) Adv. Space Res., 35, p. 899. , 10.1016/j.asr.2005.02.099 
504 |a Gómez, D.O., Mininni, P.D., Dmitruk, P., (2005) Phys. Scr., T, 116, p. 123. , 10.1238/Physica.Topical.116a00123 
504 |a Matthaeus, W.H., Pouquet, A., Mininni, P.D., Dmitruk, P., Breech, B., (2008) Phys. Rev. Lett., 100, p. 085003. , 10.1103/PhysRevLett.100.085003 
504 |a Mininni, P.D., Pouquet, A.G., Montgomery, D.C., (2006) Phys. Rev. Lett., 97, p. 244503. , 10.1103/PhysRevLett.97.244503 
504 |a Foias, C., Holm, D.D., Titi, E.S., (2001) Physica D, 152-153, p. 505. , 10.1016/S0167-2789(01)00191-9 
504 |a Lunasin, E., Kurien, S., Taylor, M., Titi, E., arXiv:physics/0702196; Politano, H., Pouquet, A., (1998) Geophys. Res. Lett., 25, p. 273. , 10.1029/97GL03642 
504 |a Kraichnan, R.H., (1967) Phys. Fluids, 10, p. 1417. , 10.1063/1.1762301 
504 |a Cao, C., Holm, D.D., Titi, E.S., (2005) J. Turbul., 6, p. 20. , 10.1080/14685240500183756 
504 |a Dmitruk, P., Gómez, D.O., Matthaeus, W.H., (2003) Phys. Plasmas, 10, p. 3584. , 10.1063/1.1602698 
504 |a Alexakis, A., (2007) Astrophys. J., 667, p. 93. , 10.1086/522048 
504 |a Herring, J.R., Schertzer, D., Lesieur, M., Newman, G.R., Chollet, J.P., Larcheveque, M., (1982) J. Fluid Mech., 124, p. 411. , 10.1017/S0022112082002560 
504 |a Lohse, D., Müller-Groeling, A., (1995) Phys. Rev. Lett., 74, p. 1747. , 10.1103/PhysRevLett.74.1747 
504 |a Martínez, D.O., Chen, S., Doolen, G.D., Kraichnan, R.H., Wang, L.-P., Zhou, Y., (1997) J. Plasma Phys., 57, p. 195. , 10.1017/S0022377896005338 
504 |a Mininni, P.D., Alexakis, A., Pouquet, A., (2006) Phys. Rev. e, 74, p. 016303. , 10.1103/PhysRevE.74.016303 
504 |a Moffatt, H.K., Tsinober, A., (1992) Annu. Rev. Fluid Mech., 24, p. 281. , 10.1146/annurev.fl.24.010192.001433 
504 |a Tsinober, A., (2001) An Informal Introduction to Turbulence, , Kluwer Academic Publishers, Dordrecht 
504 |a Chen, S., Holm, D.D., Margolin, L.G., Zhang, R., (1999) Physica D, 133, p. 66. , 10.1016/S0167-2789(99)00099-8 
504 |a Pietarila Graham, J., Holm, D.D., Mininni, P.D., Pouquet, A., (2008) Phys. Fluids, 20, p. 035107. , 10.1063/1.2880275 
504 |a Frisch, U., Pouquet, A., Léorat, J., Mazure, A., (1975) J. Fluid Mech., 68, p. 769. , 10.1017/S002211207500122X 
504 |a Hecht, M.W., Holm, D.D., Petersen, M.R., Wingate, B.A., (2008) J. Comput. Phys., 227, p. 5691. , 10.1016/j.jcp.2008.02.018 
504 |a Haugen, N.E.L., Brandenburg, A., Dobler, W., (2003) Astrophys. J., 597, p. 141. , 10.1086/380189 
504 |a Mininni, P.D., (2007) Phys. Rev. e, 76, p. 026316. , 10.1103/PhysRevE.76.026316 
504 |a Andrews, D.G., McIntyre, M.E., (1978) J. Fluid Mech., 89, p. 609. , 10.1017/S0022112078002773 
520 3 |a We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics (LAMHD) α model reproduces well both the large-scale and the small-scale properties of turbulent flows; in particular, it displays no increased (superfilter) bottleneck effect with its ensuing enhanced energy spectrum at the onset of the subfilter scales. This is in contrast to the case of the neutral fluid in which the Lagrangian-averaged Navier-Stokes α model is somewhat limited in its applications because of the formation of spatial regions with no internal degrees of freedom and subsequent contamination of superfilter-scale spectral properties. We argue that, as the Lorentz force breaks the conservation of circulation and enables spectrally nonlocal energy transfer (associated with Alfvén waves), it is responsible for the absence of a viscous bottleneck in magnetohydrodynamics (MHD), as compared to the fluid case. As LAMHD preserves Alfvén waves and the circulation properties of MHD, there is also no (superfilter) bottleneck found in LAMHD, making this method capable of large reductions in required numerical degrees of freedom; specifically, we find a reduction factor of 200 when compared to a direct numerical simulation on a large grid of 15363 points at the same Reynolds number. © 2009 The American Physical Society.  |l eng 
593 |a Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 
593 |a National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, United States 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a AVERAGED MODELS 
690 1 0 |a BOTTLENECK EFFECTS 
690 1 0 |a DEGREES OF FREEDOM 
690 1 0 |a ENERGY SPECTRA 
690 1 0 |a INTERNAL DEGREES OF FREEDOM 
690 1 0 |a LAGRANGIAN 
690 1 0 |a MAGNETOHYDRODYNAMIC TURBULENCE 
690 1 0 |a N-WAVES 
690 1 0 |a NAVIER STOKES 
690 1 0 |a NEUTRAL FLUIDS 
690 1 0 |a NONLOCAL 
690 1 0 |a REDUCTION FACTOR 
690 1 0 |a SCALE PROPERTIES 
690 1 0 |a SPATIAL REGIONS 
690 1 0 |a SPECTRAL PROPERTIES 
690 1 0 |a SUBFILTER SCALE 
690 1 0 |a SUPERFILTERS 
690 1 0 |a COMPUTER SIMULATION LANGUAGES 
690 1 0 |a ENERGY TRANSFER 
690 1 0 |a FILTERS (FOR FLUIDS) 
690 1 0 |a FLUID DYNAMICS 
690 1 0 |a LAGRANGE MULTIPLIERS 
690 1 0 |a LORENTZ FORCE 
690 1 0 |a MAGNETIC FIELDS 
690 1 0 |a MECHANICS 
690 1 0 |a REYNOLDS NUMBER 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TURBULENT FLOW 
690 1 0 |a MAGNETOHYDRODYNAMICS 
700 1 |a Mininni, P.D. 
700 1 |a Pouquet, A. 
773 0 |d 2009  |g v. 80  |k n. 1  |p Phys. Rev. E Stat. Nonlinear Soft Matter Phys.  |x 15393755  |t Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-68949103551&doi=10.1103%2fPhysRevE.80.016313&partnerID=40&md5=7315759f3b0a5ea9fbc178f171af7704  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevE.80.016313  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_PietarilaGraham  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_PietarilaGraham  |y Registro en la Biblioteca Digital 
961 |a paper_15393755_v80_n1_p_PietarilaGraham  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69540