Finite-time singularities in the dynamics of hyperinflation in an economy

The dynamics of hyperinflation episodes is studied by applying a theoretical approach based on collective "adaptive inflation expectations" with a positive nonlinear feedback proposed in the literature. In such a description it is assumed that the growth rate of the logarithmic price, r (t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Szybisz, M.A
Otros Autores: Szybisz, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07899caa a22008297a 4500
001 PAPER-8565
003 AR-BaUEN
005 20230518203822.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-69449098250 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLEEE 
100 1 |a Szybisz, M.A. 
245 1 0 |a Finite-time singularities in the dynamics of hyperinflation in an economy 
260 |c 2009 
270 1 0 |m Szybisz, L.; Laboratorio TANDAR, Departamento de Física, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, RA-1429 Buenos Aires, Argentina; email: szybisz@tandar.cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Moss De Oliveira, S., De Oliveira, P.M.C., Stauffer, D., (1999) Evolution, Money, War, and Computers, , Teubner, Stuttgart, Leipzig 
504 |a Mantegna, R.N., Stanley, H.E., (1999) An Introduction to Econophysics: Correlations and Complexity in Finance, , Cambridge University Press, Cambridge, England 
504 |a Sornette, D., (2003) Why Stock Markets Crash (Critical Events in Complex Financial Systems), , Princeton University Press, Princeton 
504 |a Mizuno, T., Takayasu, M., Takayasu, H., (2002) Physica A, 308, p. 411. , 10.1016/S0378-4371(02)00598-8 
504 |a Sornette, D., Takayasu, H., Zhou, W.-X., (2003) Physica A, 325, p. 492. , 10.1016/S0378-4371(03)00247-4 
504 |a Cagan, P., (1956) Studies in the Quantity Theory of Money, , edited by M. Friedman (University of Chicago Press, Chicago 
504 |a Olivera, J.H.G., (1967) Banca Nazionale Del Lavoro Quarterly Review, 20, p. 258 
504 |a Tanzi, V., (1977) IMF Staff Papers, 24, p. 154 
504 |a Tanzi, V., (1978) IMF Staff Papers, 25, p. 417 
504 |a Canavese, A.J., Heymann, D., (1992) Q. Rev. Econ. Finance, 32, p. 100 
504 |a Anušić, Z., Švaljek, S., http://www.eizg.hr/AdminLite/FCKeditor/UserFiles/File/ ces3-anusic-svaljek.pdf; Eguiluz, V.M., Zimmermann, M.G., (2000) Phys. Rev. Lett., 85, p. 5659. , 10.1103/PhysRevLett.85.5659 
504 |a Szybisz, M.A., Szybisz, L., arXiv:0802:3553; http://www.imf.org/external/pubs/ft/weo/2002/01/data/index.htm, Table of the International Monetary Fund; Moffatt, H.K., (2000) Nature (London), 404, p. 833. , 10.1038/35009017 
504 |a Bhattacharjee, A., Wang, X., (1992) Phys. Rev. Lett., 69, p. 2196. , 10.1103/PhysRevLett.69.2196; 
504 |a Bhattacharjee, A., Ng, C.S., Wang, X., (1995) Phys. Rev. e, 52, p. 5110. , 10.1103/PhysRevE.52.5110 
504 |a Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H., (2006) Mol. Phys., 104, p. 1509. , 10.1080/00268970600556774 
504 |a Widom, A., (1971) Phys. Rev. A, 3, p. 2042. , 10.1103/PhysRevA.3.2042 
504 |a Bevington, P.R., (1969) Data Reduction and Error Analysis for the Physical Sciences, , McGraw Hill, New York 
504 |a Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1996) Numerical Recipes in Fortran 77, , Cambridge University Press, Cambridge 
504 |a Petrović, P., Mladenović, Z., (2000) J. Money, Credit, Banking, 32, p. 785. , 10.2307/2601183 
504 |a Nielsen, B., http://www.nuffield.ox.ac.uk/economics/papers/2004/w31/NielsenYugo.pdf; Tables of the Central Statistical Office and Reserve Bank of Zimbabwe; Garganas, N.C., (2003), http://www.bis.org/review/r031113d.pdf; Palairet, M., (2002) The Four Ends of the Greek Hyperinflation of 1941-1946, , Museum Tusculanum Press, University of Copenhagen, Copenhagen 
504 |a Lykogiannis, A., (2002) Britain and the Greek Economic Crisis, 1944-1947: From Liberation to the Truman Doctrine, , University of Missouri Press, Columbia 
504 |a Juselius, K., Mladenović, Z., (2002); Chao, T., http://tomchao.com/hb.html; Makochekanwa, A., http://web.up.ac.za/UserFiles/WP_2007_10.pdf; Keynes, J.M., (1920) The Economic Consequences of Peace, , Macmillan Press, London 
504 |a (1930) A Treatise on Money, 12. , Harcourt, Brace and Co., New York 
504 |a (1936) The General Theory of Employment, Interest, and Money, , Macmillan and Co., London 
504 |a (1973) The Collected Writings of John Maynard Keynes, , the latter two reprinted in edited by D. E. Moggridge (Macmillan, London 
520 3 |a The dynamics of hyperinflation episodes is studied by applying a theoretical approach based on collective "adaptive inflation expectations" with a positive nonlinear feedback proposed in the literature. In such a description it is assumed that the growth rate of the logarithmic price, r (t), changes with a velocity obeying a power law which leads to a finite-time singularity at a critical time tc. By revising that model we found that, indeed, there are two types of singular solutions for the logarithmic price, p (t). One is given by the already reported form p (t) (tc -t) -α (with α>0) and the other exhibits a logarithmic divergence, p (t)ln [1/ (tc -t)]. The singularity is a signature for an economic crash. In the present work we express p (t) explicitly in terms of the parameters introduced throughout the formulation avoiding the use of any combination of them defined in the original paper. This procedure allows to examine simultaneously the time series of r (t) and p (t) performing a linked error analysis of the determined parameters. For the first time this approach is applied for analyzing the very extreme historical hyperinflations occurred in Greece (1941-1944) and Yugoslavia (1991-1994). The case of Greece is compatible with a logarithmic singularity. The study is completed with an analysis of the hyperinflation spiral currently experienced in Zimbabwe. According to our results, an economic crash in this country is predicted for these days. The robustness of the results to changes of the initial time of the series and the differences with a linear feedback are discussed. © 2009 The American Physical Society.  |l eng 
593 |a Departamento de Economía, Facultad de Ciencias Económicas, Universidad de Buenos Aires, Av. Córdoba 2122, RA-1120 Buenos Aires, Argentina 
593 |a Laboratorio TANDAR, Departamento de Física, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, RA-1429 Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, RA-1428 Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, RA-1033 Buenos Aires, Argentina 
690 1 0 |a CRITICAL TIME 
690 1 0 |a FINITE TIME SINGULARITY 
690 1 0 |a INITIAL TIME 
690 1 0 |a LINEAR FEEDBACK 
690 1 0 |a LOGARITHMIC DIVERGENCE 
690 1 0 |a LOGARITHMIC SINGULARITY 
690 1 0 |a NONLINEAR FEEDBACK 
690 1 0 |a POWER LAW 
690 1 0 |a SINGULAR SOLUTIONS 
690 1 0 |a THEORETICAL APPROACH 
690 1 0 |a ERROR ANALYSIS 
690 1 0 |a TIME SERIES 
690 1 0 |a TIME SERIES ANALYSIS 
650 1 7 |2 spines  |a YUGOSLAVIA 
650 1 7 |2 spines  |a ZIMBABWE 
700 1 |a Szybisz, L. 
773 0 |d 2009  |g v. 80  |k n. 2  |p Phys. Rev. E Stat. Nonlinear Soft Matter Phys.  |x 15393755  |t Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-69449098250&doi=10.1103%2fPhysRevE.80.026116&partnerID=40&md5=9b9f54194da3a0171a1bc5edfe0c6c5d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevE.80.026116  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Szybisz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n2_p_Szybisz  |y Registro en la Biblioteca Digital 
961 |a paper_15393755_v80_n2_p_Szybisz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69518