Landmine detection using IR image segmentation by means of fractal dimension analysis

This work is concerned with buried landmines detection by long wave infrared images obtained during the heating or cooling of the soil and a segmentation process of the images. The segmentation process is performed by means of a local fractal dimension analysis (LFD) as a feature descriptor. We use...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Abbate, H.A
Otros Autores: Gambini, J., Delrieux, C., Castro, E.H
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09898caa a22010817a 4500
001 PAPER-8504
003 AR-BaUEN
005 20230518203818.0
008 190411s2009 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-69649093435 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PSISD 
100 1 |a Abbate, H.A. 
245 1 0 |a Landmine detection using IR image segmentation by means of fractal dimension analysis 
260 |c 2009 
270 1 0 |m Abbate, H. A.; Facultad de Ingenieŕia, Universidad de Buenos Aires, Buenos Aires, Argentina; email: habbate@fi.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Nanda, H., Davis, L., Probabilistic template based pedestrian detection in infrared videos (2002) Proc. Intell. Vehicles Sympl. 
504 |a Viola, P., M., J., S., D., Detecting pedestrian using patterns of motions and appearance (2003) Proc. IEEE Conf. Computer Vision 
504 |a Xu, F., Fujimura, K., Pedestrian detection and tracking with night vision (2002) Proc. Intell. Vehicles Symp. 
504 |a Dai, C., Zheng, Y., Li, X., Layered representation for pedestrian detection and tracking in infrared imagery (2005) Computer Vision and Pattern Recognition, IEEE Computer Society Conference, pp. 13-20. , June 
504 |a Wilder, J., Phillips, P.J., Jiang, C., Wiener, S., Comparison of visible and infra-red imagery for face recognition (1996) Proceedings of 2nd International Conference on Automatic Face and Gesture Recognition, Killington, VT, pp. 182-187 
504 |a Socolinsky, D.A., Selinger, A., A comparative analysis of face recognition performance with visible and thermal infrared imagery (2002) Proceedings ICPR, , August 
504 |a Socolinsky, D., Selinger, A., Face recognition with visible and thermal infrared imager (2003) Computer Vision and Image Understanding, , July 
504 |a Siegert, F., Zhukov, B., Oertel, D., Limin, S., Page, S., Rielay, O., Peat fires detected by the bird satellite (2004) International Journal of Remote Sensing 
504 |a Hoegner, L., Stilla, U., Texture extraction for building models from ir sequences of urban areas (2007) IEEE Urban Remote Sensing Joint Event, pp. 1-6. , April 
504 |a Castro, E., Abbate, H., Constanzo, M., Gambini, J., Mejai, M., Berlĺes, J.J., Santos, J., Borenstejn, P., Processed infrared images of plastic and metallic landmines in an argentine project (2007) SPIE CDefense and Security symposium, Detection and Remediation Technologies for Mines and Minelike Targets XII, 6553, , April 
504 |a Castro, E.H., Abbate, H., Mallaina, E., Santos, J.M., M. Mejail, P.B., Berlles, J.J., Thermographic detection of buried objects (2005) Proceedings SPIE, Vol.5782, pp. 145-152 
504 |a Gambini, J., Mejail, M., Buemi, M., Castro, E., Abbate, H., Berlĺes, J.J., Santos, J., Landmine detection using b-spline deformable contours in ir images (2007) SPIE, Defense and Security symposium. Detection and Remediation Technologies for Mines and Minelike Targets XII, 6553, , April 
504 |a Peitgen, H.O., Saupe, D., (1986) The Science of Fractal Images, , Springer-Verlag 
504 |a Mandelbrot, B., Van Ness, J., Fractional brownian motion, fractional noises and applications (1983) Siam Review, 10, pp. 422-437 
504 |a Mandelbrot, B., (1983) The Fractal Geometry of Nature, , W. H. Freeman 
504 |a Peli, T., Multiscale fractal theory and object characterization (1990) Journal of the Optical Society of America, 7 (6), pp. 1113-1123 
504 |a Keller, T., Texture description and segmentation through fractal geometry (1989) Computer Vision, Graphics and Image Processing, 45, pp. 150-166 
504 |a Dennis, T., Dessiripis, N., Fractal modelling in image texture and analysis (1989) IEEE Proceedings, 136F(5), , IEEE 
504 |a Liu, Y., Li, Y., Image feature extraction and segmentation using fractal dimension (1997) International Conference on Information and Signal Processing, pp. 975-979. , IEEE, Sept 
504 |a Berizzi, F., Dalle-Mese, E., Fractal analysis of the signal scattered from the sea surface (1999) IEEE Trans. Antennas and Propagation, 47, (2), pp. 324-338 
504 |a Martorella, M., Berizzi, F., Dalle-Mese, E., On the fractal dimension of sea surface backscattered signal at low grazing angle (2004) IEEE Trans. Antennas and Propagation, 52, (5), pp. 324-338 
504 |a Blackledge, J., Fowler, E., Fractal dimensions segmentation of synthetic aperture radar images (1992) International Conference on Image Processing and its Applications, pp. 445-449. , IEEE 
504 |a Du, G., Yeo, T.S., A novel multifractal estimation method and its application to remote image segmentation (2002) IEEE Trans. Geosci. Remote Sensing, 40, pp. 980-982 
504 |a Gambini, M.J., Mejail, M., Jacobo-Berlles, J., Delrieux, C., SAR images segmentation through bspline deformable contours and fractal dimension (2004) International Society for Photogrammetry and Remote Sensing, ISPRS04 
504 |a Gambini, J., Mejail, M., Berlĺes, J.J., Frery, A., Accuracy of local edge detection in speckled imagery (2008) Statistics & Computing, 18 (1), pp. 15-26 
504 |a Schavemaker, J., Cremer, F., Schutte, K., Den Breejen, E., (2000) Infrared Processing and Sensor Fusion for Anti-Personnel Land-Mine Detection 
504 |a Janssen, Y.H., De Jong, A.Ñ., Winkel, H., Van Putten, F.J., Detection of surface-laid and buried mines with IR and CCD cameras: An evaluation based on measurements (1996) Proc. SPIE Vol. 2765, p. 448- 459, Detection and Remediation Technologies for Mines and Minelike Targets, pp. 448-459. , Abinash C. Dubey; Robert L. Barnard; Colin J. Lowe; John E. McFee; Eds.], Dubey, A. C., Barnard, R. L., Lowe, C. J., and McFee, J. E., eds., May 
504 |a Falconer, K., (1990) Fractal Geometry: Mathematical Foundations and Applications, , John Wiley & Sons, Chichester, England 
504 |a Chen, S., Keller, J., Crownover, R., On the calculation of fractal features from images (1993) Pattern Analysis and Machine Intelligence, 15, (10), pp. 1087-1090 
504 |a Wang, L.S., Bai, J., Threshold selection by clustering gray levels of boundary (1983) Pattern Recognition Letters, 24(12), , 2003 
504 |a Sakar, N., Chaudhuri, B., An efficient differencial box-counting approach to compute fractal dimension of image (1994) IEEE Trans. on Systems Man and Cybernetics, 24, (1), pp. 72-76 
504 |a Chaudhuri, B., Sakar, N., Texture segmentation using fractal dimension (1995) IEEE Trans. Pattern Anal. Machine Intell, 25, (17), pp. 72-76 
504 |a Hsiao John, Y., Sawchuk Alexander, A., Supervised textured image segmentation using feature smoothing and probabilistic relaxation techniques (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (12), pp. 1279-1292. , DOI 10.1109/34.41366A4 - The International Society for Optical Engineering (SPIE) 
520 3 |a This work is concerned with buried landmines detection by long wave infrared images obtained during the heating or cooling of the soil and a segmentation process of the images. The segmentation process is performed by means of a local fractal dimension analysis (LFD) as a feature descriptor. We use two different LFD estimators, box-counting dimension (BC), and differential box counting dimension (DBC). These features are computed in a per pixel basis, and the set of features is clusterized by means of the K-means method. This segmentation technique produces outstanding results, with low computational cost. © 2009 SPIE.  |l eng 
593 |a Facultad de Ingenieŕia, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Dpto. de Computacíon, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Dpto. de Ingenieŕia Electrica y Computadoras, Universidad Nacional del Sur, Bah́ia Blanca, Argentina 
690 1 0 |a CLASSIFICATION 
690 1 0 |a FRACTAL DIMENSION 
690 1 0 |a INFRARED IMAGERY 
690 1 0 |a SEGMENTATION 
690 1 0 |a BOX-COUNTING DIMENSION 
690 1 0 |a BURIED LANDMINES 
690 1 0 |a CLASSIFICATION 
690 1 0 |a COMPUTATIONAL COSTS 
690 1 0 |a FEATURE DESCRIPTORS 
690 1 0 |a FRACTAL DIMENSION ANALYSIS 
690 1 0 |a INFRARED IMAGERY 
690 1 0 |a IR IMAGES 
690 1 0 |a K-MEANS METHOD 
690 1 0 |a LAND MINE DETECTION 
690 1 0 |a LOCAL FRACTAL DIMENSION 
690 1 0 |a LONG WAVE INFRARED 
690 1 0 |a SEGMENTATION 
690 1 0 |a SEGMENTATION PROCESS 
690 1 0 |a SEGMENTATION TECHNIQUES 
690 1 0 |a BOMBS (ORDNANCE) 
690 1 0 |a EXPLOSIVES 
690 1 0 |a IMAGE SEGMENTATION 
690 1 0 |a INFRARED IMAGING 
690 1 0 |a MINING 
690 1 0 |a PARTIAL DISCHARGES 
690 1 0 |a FRACTAL DIMENSION 
700 1 |a Gambini, J. 
700 1 |a Delrieux, C. 
700 1 |a Castro, E.H. 
711 2 |c Orlando, FL  |d 13 April 2009 through 17 April 2009  |g Código de la conferencia: 76786 
773 0 |d 2009  |g v. 7303  |p Proc SPIE Int Soc Opt Eng  |n Proceedings of SPIE - The International Society for Optical Engineering  |x 0277786X  |z 9780819475695  |t Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-69649093435&doi=10.1117%2f12.819150&partnerID=40&md5=64da2af36fe1ab34a3473937ff824309  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1117/12.819150  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0277786X_v7303_n_p_Abbate  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0277786X_v7303_n_p_Abbate  |y Registro en la Biblioteca Digital 
961 |a paper_0277786X_v7303_n_p_Abbate  |b paper  |c NP 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI 
999 |c 69457