Nonstationary impacts of the southern annular mode on Southern Hemisphere climate

The temporal stability of the southern annular mode (SAM) impacts on Southern Hemisphere climate during austral spring is analyzed. Results show changes in the typical hemispheric circulation pattern associated with SAM, particularly over South America and Australia, between the 1960s-70s and 1980s-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Silvestri, G.
Otros Autores: Vera, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08401caa a22008297a 4500
001 PAPER-8368
003 AR-BaUEN
005 20230607132518.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77649304501 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Silvestri, G. 
245 1 0 |a Nonstationary impacts of the southern annular mode on Southern Hemisphere climate 
260 |c 2009 
270 1 0 |m Silvestri, G.; CIMA/CONICET-UBA, Ciudad Universitaria, Intendente Guiraldes 2160, Pabelló n II, 2do, Piso (C1428EGA), Buenos Aires, Argentina; email: gabriels@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aceituno, P., On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate (1988) Mon. Wea. Rev., 116, pp. 505-524 
504 |a Berbery, E., Barros, V., The hydrologic cycle of the La Plata Basin in South America (2002) J. Hydrometeor., 3, pp. 630-645 
504 |a Bromwich, D., Rogers, A., Kållberg, P., Cullather, R., White, J., Kreutz, K., ECMWF analyses and reanalyses: Depiction of ENSO signal in Antarctic precipitation (2000) J. Climate, 13, pp. 1406-1420 
504 |a Carvalho, L., Jones, C., Ambrizzi, T., Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer (2005) J. Climate, 18, pp. 702-718 
504 |a Fogt, R., Bromwich, D., Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode (2006) J. Climate, 19, pp. 979-997 
504 |a Garreaud, R., Battisti, D., Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation (1999) J. Climate, 12, pp. 2113-2123 
504 |a Gillett, N., Kell, T., Jones, P., Regional climate impacts of the Southern Annular Mode (2006) Geophys. Res. Lett., 33, pp. L23704. , doi:10.1029/2006/GL027721 
504 |a Hendon, H., Thompson, D., Wheeler, M., Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode (2007) J. Climate, 20, pp. 2452-2467 
504 |a Kalnay, E., The NCEP/NCAR 40-Year Reanalysis Project (1996) Bull. Amer. Meteor. Soc., 77, pp. 437-471 
504 |a Kidson, J., Indices of the Southern Hemisphere zonal wind (1988) J. Climate, 1, pp. 183-194 
504 |a Kidson, J., Principalmodes of Southern Hemisphere low-frequency variability obtained fromNCEP-NCAR reanalyses (1999) J. Climate, 12, pp. 2808-2830 
504 |a L'Heureux, M., Thompson, D., Observed relationships between the El Nin{ogonek} o-Southern Oscillation and the extratropical zonal-mean circulation (2006) J. Climate, 19, pp. 276-287 
504 |a Marshall, G., Trends in the southern annular mode from observations and reanalyses (2003) J. Climate, 16, pp. 4134-4143 
504 |a Marshall, G., Orr, A., van Lipzig, N., King, J., The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures (2006) J. Climate, 19, pp. 5388-5404 
504 |a Reason, C., Roualt, M., Links between the Antarctic Oscillation and winter rainfall over western South Africa (2005) Geophys. Res. Lett., 32, pp. L07705. , doi:10.1029/2005GL022419 
504 |a Robertson, A., Mechoso, C., Interannual and interdecadal variability of the South Atlantic convergence zone (2000) Mon. Wea. Rev., 128, pp. 2947-2957 
504 |a Rogers, J., van Loon, H., Spatial variability of sea level pressure and 500-mb height anomalies over the Southern Hemisphere (1982) Mon. Wea. Rev., 110, pp. 1375-1392 
504 |a Rusticucci, M., Penalba, O., Interdecadal changes in the precipitation seasonal cycle over southern South America and their relationship with surface temperature (2000) Climate Res, 16, pp. 1-15 
504 |a Schwerdtfeger, W., Climates of Central and South America (1976), 12, p. 532. , World Survey of Climatology, Elsevier; Sen Gupta, A., England, M., Coupled ocean-atmosphereice response to variations in the southern annular mode (2006) J. Climate, 19, pp. 4457-4486 
504 |a Setoh, T., Imawaki, S., Ostrovskii, A., Umatani, S., Interdecadal variations of ENSO signals and annual cycles revealed by wavelet analysis (1999) J. Oceanogr., 55, pp. 385-394 
504 |a Silvestri, G., Vera, C., Antarctic Oscillation signal on precipitation anomalies over southeastern South America (2003) Geophys. Res. Lett., 30, p. 2115. , doi:10.1029/2003GL018277 
504 |a Thompson, D., Wallace, J., Annular modes in the extratropical circulation. Part I: Month-to-month variability (2000) J. Climate, 13, pp. 1000-1016 
504 |a Ummenhofer, C., England, M., Interannual extremes in New Zealand precipitation linked to modes of Southern Hemisphere climate variability (2007) J. Climate, 20, pp. 5418-5440 
504 |a Zhou, J., Lau, K., Principal modes of interannual and decadal variability of summer rainfall over South America (2001) Int. J. Climatol., 21, pp. 1623-1644 
520 3 |a The temporal stability of the southern annular mode (SAM) impacts on Southern Hemisphere climate during austral spring is analyzed. Results show changes in the typical hemispheric circulation pattern associated with SAM, particularly over South America and Australia, between the 1960s-70s and 1980s-90s. In the first decades, the SAM positive phase is associated with an anomalous anticyclonic circulation developed in the southwestern subtropical Atlantic that enhances moisture advection and promotes precipitation increase over southeastern South America (SESA). On the other hand, during the last decades the anticyclonic anomaly induced by the SAM's positive phase covers most of southern South America and the adjacent Atlantic, producing weakened moisture convergence and decreased precipitation over SESA as well as positive temperature anomaly advection over southern South America. Some stations in the Australia-New Zealand sector and Africa exhibit significant correlations between the SAM and precipitation anomalies in both or one of the subperiods, but they do not characterize a consistent area in which the SAM signal can be certainly determined. Significant changes of SAM influence on temperature anomalies on multidecadal time scales are observed elsewhere. Particularly over the Australia-New Zealand sector, significant positive correlations during the first decades become insignificant or even negative in the later period, whereas changes of opposite sign occur in the Antarctic Peninsula between both subperiods. © 2009 American Meteorological Society.  |l eng 
593 |a Centro de Investigaciones del Mar y la Atmósfera/CONICET-UBA, DCAO/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ANTARCTIC PENINSULA 
690 1 0 |a ANTICYCLONIC ANOMALIES 
690 1 0 |a ANTICYCLONIC CIRCULATION 
690 1 0 |a AUSTRAL SPRING 
690 1 0 |a CIRCULATION PATTERNS 
690 1 0 |a MOISTURE ADVECTION 
690 1 0 |a MOISTURE CONVERGENCE 
690 1 0 |a MULTI-DECADAL TIME SCALE 
690 1 0 |a NEW ZEALAND 
690 1 0 |a NONSTATIONARY 
690 1 0 |a POSITIVE CORRELATIONS 
690 1 0 |a PRECIPITATION ANOMALIES 
690 1 0 |a SOUTHERN ANNULAR MODE 
690 1 0 |a SOUTHERN HEMISPHERE 
690 1 0 |a TEMPERATURE ANOMALY 
690 1 0 |a TEMPORAL STABILITY 
690 1 0 |a MOISTURE 
690 1 0 |a ADVECTION 
651 4 |a AUSTRALIA 
651 4 |a SOUTH AMERICA 
651 4 |a SOUTHEASTERN SOUTH AMERICA 
700 1 |a Vera, C. 
773 0 |d 2009  |g v. 22  |h pp. 6142-6148  |k n. 22  |p J. Clim.  |x 08948755  |w (AR-BaUEN)CENRE-5480  |t Journal of Climate 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77649304501&doi=10.1175%2f2009JCLI3036.1&partnerID=40&md5=c5cc8be0ee5ec834fe44be5989642f9e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1175/2009JCLI3036.1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08948755_v22_n22_p6142_Silvestri  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08948755_v22_n22_p6142_Silvestri  |y Registro en la Biblioteca Digital 
961 |a paper_08948755_v22_n22_p6142_Silvestri  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69321