Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster

Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Norry, F.M
Otros Autores: Larsen, P.F, Liu, Y., Loeschcke, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype. © 2009 Elsevier Ltd. All rights reserved.
Bibliografía:Baden, H.P., Kollias, N., Anderson, R.R., Hopkins, T., Raftery, L., Drosophila melanogaster larvae detect low doses of UVC radiation as manifested by a writhing response (1996) Archives of Insect Biochemistry and Physiology, 32, pp. 187-196
Bettencourt, B.R., Hogan, C.C., Nimali, M., Drohan, B.W., Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies (2008) BMC Biology, 6, p. 5
Birch-Machin, I., Gao, S., Huen, D., McGirr, R., White, R.A.H., Russell, S., Genomic analysis of heat-shock factor targets in Drosophila (2005) Genome Biology, 6, pp. R63
Brown, A.C., Olver, W.I., Donnelly, C.J., May, M.E., Naggert, J.K., Shaffer, D.J., Roopenian, D.C., Searching QTL by gene expression: analysis of diabesity (2005) BMC Genetics, 6, p. 12
Carbone, M.A., Jordan, K.W., Lyman, R.F., Harbison, S.T., Leips, J., Morgan, T.J., DeLuca, M., Mackay, T.F.C., Phenotypic variation and natural selection at catsup, a pleiotropic quantitative trait gene in Drosophila (2006) Current Biology, 16, pp. 912-919
Chen, M., Kendziorski, C., A statistical framework for expression quantitative trait loci mapping (2007) Genetics, 177, pp. 761-771
Coffman, C.J., Wayne, M.L., Nuzhdin, S.V., Higgins, L.A., McIntyre, L.M., Identification of co-regulated transcripts affecting male body size in Drosophila (2005) Genome Biology, 6, pp. R53
Curtis, C., Landis, G.N., Folk, D., Wehr, N.B., Hoe, N., Waskar, M., Abdueva, D., Tower, J., Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes (2007) Genome Biology, 8, pp. R262
Folk, D.G., Zwollo, P., Rand, D.M., Gilchrist, G.W., Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males (2006) Journal of Experimental Biology, 209, pp. 3964-3973
Harbison, S.T., Chang, S., Kamdar, K.P., Mackay, T.F.C., Quantitative genomics of starvation stress resistance in Drosophila (2005) Genome Biology, 6, pp. R36
Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nature Reviews Genetics, 9, pp. 421-431
Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 22DDT method (2001) Methods, 25, pp. 402-408
Gupta, S., Knowlton, A.A., HSP60, bax, apoptosis and the heart (2005) Journal of Cellular and Molecular Medicine, 9, pp. 51-58
Mackay, T.F.C., The genetic architecture of quantitative traits (2001) Annual Review of Genetics, 35, pp. 303-339
Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594
Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284
Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Molecular Biology, 16, pp. 509-513
Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581
Nuzhdin, S.V., Harshman, L.G., Zhou, M., Harmon, K., Genome-enabled hitchhiking mapping identifies QTLs for stress resistance in natural Drosophila (2007) Heredity, 99, pp. 313-321
Peterson, L.E., Factor analysis of cluster-specific gene expression levels from cDNA microarrays (2002) Computer Methods and Programs in Biomedicine, 69, pp. 179-188
Rako, L., Blacket, M.J., McKechnie, S.W., Hoffmann, A.A., Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline (2007) Molecular Ecology, 16, pp. 2948-2957
Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinformatics Methods and Protocols: Methods in Biology, pp. 365-386. , Krawetz S., and Misener S. (Eds), Humana Press, Totowa, NJ
Sabban, E.L., Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events (2001) Trends in Neurosciences, 24, pp. 91-98
Sillanpaa, M.J., Noykova, N., Hierarchical modeling of clinical and expression quantitative trait loci (2008) Heredity, 101, pp. 271-284
Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328
Sørensen, J.G., Nielsen, M.M., Loeschcke, V., Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors (2007) Journal of Evolutionary Biology, 20, pp. 1624-1636
Sokal, R.R., Rohlf, F.J., (1995) Biometry the Principles and Practice of Statistics in Biological Research, , WH Freeman and Company, New York
StatSoft, (1999) STATISTICA for Windows (Computer Program Manual), , StatSoft Inc., Tulsa
Telonis-Scott, M., Hallas, R., McKechnie, S.W., Wee, C.W., Hoffmann, A.A., Selection for cold resistance alters gene transcript levels in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 549-555
Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster (1987) Advances in Genetics, 24, pp. 127-222
Zeng, Z.B., QTL mapping and the genetic basis of adaptation: recent developments (2005) Genetica, 123, pp. 25-37
ISSN:00221910
DOI:10.1016/j.jinsphys.2009.07.009