Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster

Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Norry, F.M
Otros Autores: Larsen, P.F, Liu, Y., Loeschcke, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12557caa a22012137a 4500
001 PAPER-8366
003 AR-BaUEN
005 20230518203810.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70349172507 
024 7 |2 cas  |a Drosophila Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Norry, F.M. 
245 1 0 |a Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster 
260 |c 2009 
270 1 0 |m Norry, F.M.; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina; email: fnorry@ege.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baden, H.P., Kollias, N., Anderson, R.R., Hopkins, T., Raftery, L., Drosophila melanogaster larvae detect low doses of UVC radiation as manifested by a writhing response (1996) Archives of Insect Biochemistry and Physiology, 32, pp. 187-196 
504 |a Bettencourt, B.R., Hogan, C.C., Nimali, M., Drohan, B.W., Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies (2008) BMC Biology, 6, p. 5 
504 |a Birch-Machin, I., Gao, S., Huen, D., McGirr, R., White, R.A.H., Russell, S., Genomic analysis of heat-shock factor targets in Drosophila (2005) Genome Biology, 6, pp. R63 
504 |a Brown, A.C., Olver, W.I., Donnelly, C.J., May, M.E., Naggert, J.K., Shaffer, D.J., Roopenian, D.C., Searching QTL by gene expression: analysis of diabesity (2005) BMC Genetics, 6, p. 12 
504 |a Carbone, M.A., Jordan, K.W., Lyman, R.F., Harbison, S.T., Leips, J., Morgan, T.J., DeLuca, M., Mackay, T.F.C., Phenotypic variation and natural selection at catsup, a pleiotropic quantitative trait gene in Drosophila (2006) Current Biology, 16, pp. 912-919 
504 |a Chen, M., Kendziorski, C., A statistical framework for expression quantitative trait loci mapping (2007) Genetics, 177, pp. 761-771 
504 |a Coffman, C.J., Wayne, M.L., Nuzhdin, S.V., Higgins, L.A., McIntyre, L.M., Identification of co-regulated transcripts affecting male body size in Drosophila (2005) Genome Biology, 6, pp. R53 
504 |a Curtis, C., Landis, G.N., Folk, D., Wehr, N.B., Hoe, N., Waskar, M., Abdueva, D., Tower, J., Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes (2007) Genome Biology, 8, pp. R262 
504 |a Folk, D.G., Zwollo, P., Rand, D.M., Gilchrist, G.W., Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males (2006) Journal of Experimental Biology, 209, pp. 3964-3973 
504 |a Harbison, S.T., Chang, S., Kamdar, K.P., Mackay, T.F.C., Quantitative genomics of starvation stress resistance in Drosophila (2005) Genome Biology, 6, pp. R36 
504 |a Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216 
504 |a Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nature Reviews Genetics, 9, pp. 421-431 
504 |a Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494 
504 |a Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 22DDT method (2001) Methods, 25, pp. 402-408 
504 |a Gupta, S., Knowlton, A.A., HSP60, bax, apoptosis and the heart (2005) Journal of Cellular and Molecular Medicine, 9, pp. 51-58 
504 |a Mackay, T.F.C., The genetic architecture of quantitative traits (2001) Annual Review of Genetics, 35, pp. 303-339 
504 |a Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242 
504 |a Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594 
504 |a Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284 
504 |a Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Molecular Biology, 16, pp. 509-513 
504 |a Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581 
504 |a Nuzhdin, S.V., Harshman, L.G., Zhou, M., Harmon, K., Genome-enabled hitchhiking mapping identifies QTLs for stress resistance in natural Drosophila (2007) Heredity, 99, pp. 313-321 
504 |a Peterson, L.E., Factor analysis of cluster-specific gene expression levels from cDNA microarrays (2002) Computer Methods and Programs in Biomedicine, 69, pp. 179-188 
504 |a Rako, L., Blacket, M.J., McKechnie, S.W., Hoffmann, A.A., Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline (2007) Molecular Ecology, 16, pp. 2948-2957 
504 |a Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinformatics Methods and Protocols: Methods in Biology, pp. 365-386. , Krawetz S., and Misener S. (Eds), Humana Press, Totowa, NJ 
504 |a Sabban, E.L., Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events (2001) Trends in Neurosciences, 24, pp. 91-98 
504 |a Sillanpaa, M.J., Noykova, N., Hierarchical modeling of clinical and expression quantitative trait loci (2008) Heredity, 101, pp. 271-284 
504 |a Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328 
504 |a Sørensen, J.G., Nielsen, M.M., Loeschcke, V., Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors (2007) Journal of Evolutionary Biology, 20, pp. 1624-1636 
504 |a Sokal, R.R., Rohlf, F.J., (1995) Biometry the Principles and Practice of Statistics in Biological Research, , WH Freeman and Company, New York 
504 |a StatSoft, (1999) STATISTICA for Windows (Computer Program Manual), , StatSoft Inc., Tulsa 
504 |a Telonis-Scott, M., Hallas, R., McKechnie, S.W., Wee, C.W., Hoffmann, A.A., Selection for cold resistance alters gene transcript levels in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 549-555 
504 |a Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster (1987) Advances in Genetics, 24, pp. 127-222 
504 |a Zeng, Z.B., QTL mapping and the genetic basis of adaptation: recent developments (2005) Genetica, 123, pp. 25-37 
520 3 |a Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype. © 2009 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Umweltbundesamt 
536 |a Detalles de la financiación: Natural Sciences and Engineering Research Council of Canada 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: We thank Ary Hoffmann for letting us use his SH lines when starting our baselines, Jesper Dahlgaard for earlier collaboration on the set up of QTL lines, Pablo Sambucetii and Alejandra Scannapieco for collaboration on the set up of RIL, Jane Frydenberg for advice with the application of the qRT-PCR procedures, and two anonymous reviewers for helpful comments on the manuscript. This research was supported by frame and center grants from the Danish Natural Sciences Research Council to VL. Additional support from ANPCyT, UBA and CONICET-Argentina to FMN and from the Chinese–Danish Government Scholarship to YJL is also acknowledged. 
593 |a Biological Sciences, Ecology and Genetics, University of Aarhus, Ny Munkegade, Bldg. 1540, DK-8000 Aarhus C, Denmark 
593 |a College of Plant Protection, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong 271018, China 
593 |a Danish Agricultural Advisory Service, National Centre for Fur Animals, Udkaersvej 15, DK-8200 Aarhus N, Denmark 
593 |a Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina 
690 1 0 |a GENE EXPRESSION PRINCIPAL COMPONENTS 
690 1 0 |a HEAT KNOCKDOWN RESISTANCE 
690 1 0 |a QUANTITATIVE POLYMERASE CHAIN REACTION 
690 1 0 |a QUANTITATIVE TRAIT LOCI 
690 1 0 |a RECOMBINANT INBRED LINES 
690 1 0 |a DROSOPHILA PROTEIN 
690 1 0 |a CHROMOSOME 
690 1 0 |a FLY 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a TEMPERATURE TOLERANCE 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMISTRY 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETICS 
690 1 0 |a HEAT 
690 1 0 |a MALE 
690 1 0 |a METABOLISM 
690 1 0 |a QUANTITATIVE TRAIT LOCUS 
690 1 0 |a ANIMALS 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a DROSOPHILA PROTEINS 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HOT TEMPERATURE 
690 1 0 |a MALE 
690 1 0 |a QUANTITATIVE TRAIT LOCI 
690 1 0 |a DROSOPHILA MELANOGASTER 
700 1 |a Larsen, P.F. 
700 1 |a Liu, Y. 
700 1 |a Loeschcke, V. 
773 0 |d 2009  |g v. 55  |h pp. 1050-1057  |k n. 11  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349172507&doi=10.1016%2fj.jinsphys.2009.07.009&partnerID=40&md5=124b013cbd774f2cb80c68d6fe212e88  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2009.07.009  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v55_n11_p1050_Norry  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v55_n11_p1050_Norry  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v55_n11_p1050_Norry  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69319