Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum)

Nitrogen (N) remobilization in wheat (Triticum aestivum) plants is crucial because it determines the grain protein concentration and the baking quality of flour. In order to evaluate the influence of cytokinins on N remobilization during N starvation, we analyzed various N remobilization parameters...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Criado, M.V
Otros Autores: Caputo, C., Roberts, I.N, Castro, M.A, Barneix, A.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13135caa a22012377a 4500
001 PAPER-8364
003 AR-BaUEN
005 20230518203810.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70349504208 
024 7 |2 cas  |a nitrogen, 7727-37-9; Cytokinins; DNA Primers; Nitrogen, 7727-37-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPPHE 
100 1 |a Criado, M.V. 
245 1 0 |a Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum) 
260 |c 2009 
270 1 0 |m Criado, M.V.; IBYF-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; email: criado@agro.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ananieva, K.I., Ananiev, E.D., Effect of methyl ester of jasmonic acid and benzylaminopurine on growth and protein profile of excised cotyledons of Cucurvita pepo (zucchini) (1999) Biol Plant, 42, pp. 549-557 
504 |a Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis (2004) Plant Cell, 16, pp. 3460-3479 
504 |a Arnon, D.I., Cooper enzymes in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris (1949) Plant Physiol, 24, pp. 1-15 
504 |a Balibrea Lara, M.E., Gonzalez Garcia, M.C., Fatima, T., Ehness, R., Lee, T.K., Proels, R., Extracellular invertase is an essential component of cytokinin-mediated delay of senescence (2004) Plant Cell, 16, pp. 1276-1287 
504 |a Barneix, A.J., Physiology and biochemistry of source-regulated protein accumulation in the wheat grain (2007) J Plant Physiol, 164, pp. 581-590 
504 |a Binns, A.N., Cytokinin accumulation and action: biochemical, genetic, and molecular approaches (1994) Annu Rev Plant Physiol Plant Mol Biol, 45, pp. 173-196 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Brenner, W.G., Romanov, G.A., Kollmer, I., Burkle, L., Schmulling, T., Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades (2005) Plant J, 44, pp. 314-333 
504 |a Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., The molecular analysis of leaf senescence - a genomics approach (2003) Plant Biotech J, 1, pp. 3-22 
504 |a Caputo, C., Barneix, A.J., Export of amino acids to the phloem in relation to N supply in wheat (1997) Physiol Plant, 101, pp. 853-860 
504 |a Caputo, C., Criado, M.V., Roberts, I.N., Gelso, M.A., Barneix, A.J., Regulation of glutamine synthetase 1 and amino acids transport in the phloem of young wheat plants (2009) Plant Physiol Biochem, 47, pp. 335-342 
504 |a Carpenter, W.J.G., Cherry, J.H., Effects of protein inhibitors and auxin on nucleic acid metabolism in peanut cotyledons (1966) Plant Physiol, 41, pp. 919-922 
504 |a Cataldo, D.A., Haroon, M., Schrader, L.E., Youngs, V.L., Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid (1975) Commun Soil Sci Plant Anal, 6, pp. 71-80 
504 |a Cowan, A.K., Freeman, M., Björkman, P.-O., Nicander, B., Sitbon, F., Tillberg, E., Effects of senescence-induced alteration in cytokinin metabolism on source-sink relationships and ontogenic and stress-induced transitions in tobacco (2005) Planta, 221, pp. 801-814 
504 |a Crafts-Brandner, S.J., Hölzer, R., Feller, U., Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves (1998) Physiol Plant, 102, pp. 192-200 
504 |a Criado, M.V., Roberts, I.N., Echeverria, M., Barneix, A.J., Plant growth regulators and induction of leaf senescence in nitrogen-deprived wheat plants (2007) J Plant Growth Regul, 26, pp. 301-307 
504 |a Feller, U., Fischer, A., Nitrogen metabolism in senescing leaves (1994) Crit Rev Plant Sci, 13, pp. 241-273 
504 |a Gan, S., Amasino, R.M., Inhibition of leaf senescence by autoregulated production of cytokinin (1995) Science, 270, pp. 1986-1988 
504 |a Gan, S., Amasino, R.M., Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence (1997) Plant Physiol, 113, pp. 313-319 
504 |a Goswami, B.B., Chakrabarti, S., Dube, D.K., Roy, S.C., Protein synthesis in vitro in a system from plant mitochondria (1973) Biochem J, 134, pp. 815-816 
504 |a Hirel, B., Le Gouis, J., Ney, B., Gallais, A., The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches (2007) J Exp Bot, 58, pp. 2369-2387 
504 |a Hoagland, D.R., Arnon, D.I., The water culture method for growing plants without soil (1950) Calif Agric Exp Sta Circ, 347, pp. 1-39 
504 |a Hu, X., Jiang, M., Zhang, A., Lu, J., Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves (2005) Planta, 223, pp. 57-68 
504 |a Johansen, D.A., (1940) Plant microtechnique, , McGraw-Hill, New York 
504 |a Jordi, W., Schapendonk, A., Davelaar, E., Stoopen, G.M., Pot, C.S., De Visser, R., Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning (2000) Plant Cell Environ, 23, pp. 279-289 
504 |a Kamínek, M., Motyka, V., Vanková, R., Regulation of cytokinin content in plant cells (1997) Physiol Plant, 101, pp. 689-700 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 
504 |a Lewis, O.A.M., Watson, E.F., Hewitt, E.J., Determination of nitrate reductase activity in barley leaves and roots (1982) Ann Bot, 49, pp. 31-37 
504 |a Margulies, M.M., Brubaker, C., Effect of chloramphenicol on amino acid incorporation by chloroplasts and comparison with the effect of chloramphenicol on chloroplast development in vivo (1970) Plant Physiol, 45, pp. 632-633 
504 |a Masclaux, C., Quilleré, I., Gallais, A., Hirel, B., The challenge of remobilisation in plant nitrogen economy. A survey of physio-agronomic and molecular approaches (2001) Ann Appl Biol, 138, pp. 69-81 
504 |a McCready, R.M., Guggolz, J., Silviera, V., Owens, H.S., Determination of starch and amylose in vegetables. Application to peas (1950) Anal Chem, 22, pp. 1156-1158 
504 |a Paramonova, N.V., Krasavina, M.S., Sokolova, S.V., Ultrastructure of chloroplasts in phloem companion cells and mesophyll cells as related to the stimulation of sink activity by cytokinins (2002) Russ J Plant Physiol, 49, pp. 187-195 
504 |a Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy (1963) J Cell Biol, 17, pp. 208-212 
504 |a Roitsch, T., Ehness, R., Regulation of source/sink relations by cytokinins (2000) Plant Growth Regul, 32, pp. 359-367 
504 |a Schwechheimer, C., Schwager, K., Regulated proteolysis and plant development (2004) Plant Cell Rep, 23, pp. 353-364 
504 |a Spurr, A.R., A low-viscosity epoxy resin embedding medium for electron microscopy (1969) J Ultrastruct Res, 26, pp. 31-43 
504 |a Stitt, M., Müller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Steps towards an integrated view of nitrogen metabolism (2002) J Exp Bot, 53, pp. 959-970 
504 |a Takegami, T., A study on senescence in tobacco leaf disks I. Inhibition by benzylaminopurine of decrease in protein level (1975) Plant Cell Physiol, 16, pp. 407-416 
504 |a Vierstra, R.D., Proteolysis in plants: mechanisms and functions (1996) Plant Mol Biol, 32, pp. 275-302 
504 |a Yemm, E.W., Cocking, E.C., The determination of amino-acids with ninhydrin (1955) Analyst, 80, pp. 209-213 
504 |a Yemm, E.W., Willis, A.J., The estimation of carbohydrates in plant extracts by anthrone (1954) Biochem J, 57, pp. 508-514 
504 |a Zavaleta-Mancera, H., Thomas, B., Thomas, H., Scott, I., Regreening of senescent Nicotiana leaves. II Redifferentiation of plastids (1999) J Exp Bot, 50, pp. 1683-1689 
520 3 |a Nitrogen (N) remobilization in wheat (Triticum aestivum) plants is crucial because it determines the grain protein concentration and the baking quality of flour. In order to evaluate the influence of cytokinins on N remobilization during N starvation, we analyzed various N remobilization parameters in wheat plants that were watered with 6-benzylaminopurine (BAP) either with or without KNO3. Besides, the effects of BAP on protein synthesis were evaluated, and the size and ultrastructure of chloroplasts of BAP-treated plants were studied. BAP supply inhibited N remobilization of plants independently of N supply as shown by the increase in protein, Rubisco, chlorophyll, sugar and starch concentrations in the older leaves, the decrease in amino acid and sugar export to the phloem, and the decrease in protein, Rubisco and chlorophyll concentrations in the younger leaves. Besides, BAP supply increased nitrate reductase activity and decreased nitrate concentration, thus suggesting an increased assimilatory capacity. The increase in protein concentration could be explained mainly by a significant decrease in protein degradation and, to a lesser extent, by an increase in protein synthesis. Finally, an increase both in the size of the chloroplast and in the plastoglobuli and starch contents in BAP-supplied plants was observed. We propose that cytokinins retain the sink activity of the older leaves by inhibiting amino acid and sugar export to the phloem and stimulating assimilate accumulation in the chloroplasts of the older leaves. Besides, BAP may increase protein concentration of the older leaves both by decreasing protein degradation and maintaining protein synthesis even under stress conditions. © 2009 Elsevier GmbH. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Ciencia y Tecnología 
536 |a Detalles de la financiación: This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); and the Agencia Nacional de Ciencia y Tecnología (SECYT), Argentina. 
593 |a IBYF-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires, Argentina 
690 1 0 |a BENZYLAMINOPURINE 
690 1 0 |a CHLOROPLAST 
690 1 0 |a NITROGEN REMOBILIZATION 
690 1 0 |a NITROGEN STARVATION 
690 1 0 |a TRITICUM AESTIVUM 
690 1 0 |a CYTOKININ 
690 1 0 |a NITROGEN 
690 1 0 |a PRIMER DNA 
690 1 0 |a ARTICLE 
690 1 0 |a CHLOROPLAST 
690 1 0 |a ELECTRON MICROSCOPY 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a METABOLISM 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a WHEAT 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a CHLOROPLASTS 
690 1 0 |a CYTOKININS 
690 1 0 |a DNA PRIMERS 
690 1 0 |a MICROSCOPY, ELECTRON 
690 1 0 |a NITROGEN 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a TRITICUM 
690 1 0 |a TRITICUM AESTIVUM 
700 1 |a Caputo, C. 
700 1 |a Roberts, I.N. 
700 1 |a Castro, M.A. 
700 1 |a Barneix, A.J. 
773 0 |d 2009  |g v. 166  |h pp. 1775-1785  |k n. 16  |p J. Plant Physiol.  |x 01761617  |w (AR-BaUEN)CENRE-1651  |t Journal of Plant Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349504208&doi=10.1016%2fj.jplph.2009.05.007&partnerID=40&md5=8dae8cb0fe689ecbe337feed30280cc9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jplph.2009.05.007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01761617_v166_n16_p1775_Criado  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01761617_v166_n16_p1775_Criado  |y Registro en la Biblioteca Digital 
961 |a paper_01761617_v166_n16_p1775_Criado  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69317