Lifshitz black hole in three dimensions

We show that three-dimensional massive gravity admits Lifshitz metrics with generic values of the dynamical exponent z as exact solutions. At the point z=3, exact black hole solutions that are asymptotically Lifshitz arise. These spacetimes are three-dimensional analogues of those that were recently...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ayón-Beato, E.
Otros Autores: Garbarz, A., Giribet, G., Hassaïne, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05665caa a22006257a 4500
001 PAPER-8334
003 AR-BaUEN
005 20230518203808.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-72049099060 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRVDA 
100 1 |a Ayón-Beato, E. 
245 1 0 |a Lifshitz black hole in three dimensions 
260 |c 2009 
270 1 0 |m Ayón-Beato, E.; Departamento de Física, CINVESTAV-IPN, Apartado Postal 14-740, México D.F., Mexico; email: ayon-beato@fis.cinvestav.mx 
506 |2 openaire  |e Política editorial 
504 |a Maldacena, J., (1998) Adv. Theor. Math. Phys., 2, p. 231. , 1095-0761 
504 |a Hartnoll, S., arXiv:0903.3246; Son, D.T., (2008) Phys. Rev. D, 78, p. 046003. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.046003 
504 |a Balasubramanian, K., McGreevy, J., (2008) Phys. Rev. Lett., 101, p. 061601. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.061601 
504 |a Kachru, S., Liu, X., Mulligan, M., (2008) Phys. Rev. D, 78, p. 106005. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.106005 
504 |a Mann, R.B., J. High Energy Phys., 2009 (6), p. 075. , JHEPFG 1029-8479 10.1088/1126-6708/2009/06/075 
504 |a Bertoldi, G., Burrington, B., Peet, A., arXiv:0905.3183; Bertoldi, G., Burrington, B., Peet, A., arXiv:0907.4755; Taylor, M., arXiv:0812.0530; Danielsson, U., Thorlacius, L., J. High Energy Phys., 2009 (3), p. 070. , JHEPFG 1029-8479 10.1088/1126-6708/2009/03/070 
504 |a Brynjolfsson, E., Danielsson, U., Thorlacius, L., Zingg, T., arXiv:0908.2611; Balasubramanian, K., McGreevy, J., arXiv:0909.0263; Azeyanagi, T., Li, W., Takayanagi, T., J. High Energy Phys., 2009 (6), p. 084. , JHEPFG 1029-8479 10.1088/1126-6708/2009/06/084 
504 |a Li, W., Nishioka, T., Takayanagi, T., J. High Energy Phys., 2009 (10), p. 015. , JHEPFG 1029-8479 10.1088/1126-6708/2009/10/015 
504 |a Bergshoeff, E., Hohm, O., Townsend, P., (2009) Phys. Rev. Lett., 102, p. 201301. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.201301 
504 |a Ayón-Beato, E., Giribet, G., Hassaïne, M., J. High Energy Phys., 2009 (5), p. 029. , JHEPFG 1029-8479 10.1088/1126-6708/2009/05/029 
504 |a Clément, G., arXiv:0905.0553; Liu, Y., Sun, Y.-W., J. High Energy Phys., 2009 (4), p. 106. , JHEPFG 1029-8479 10.1088/1126-6708/2009/04/106 
504 |a Liu, Y., Sun, Y.-W., J. High Energy Phys., 2009 (5), p. 039. , JHEPFG 1029-8479 10.1088/1126-6708/2009/05/039 
504 |a Bergshoeff, E., Hohm, O., Townsend, P., (2009) Phys. Rev. D, 79, p. 124042. , PRVDAQ 1550-7998 10.1103/PhysRevD.79.124042 
504 |a Oliva, J., Tempo, D., Troncoso, R., J. High Energy Phys., 2009 (7), p. 011. , JHEPFG 1029-8479 10.1088/1126-6708/2009/07/011 
504 |a Banãdos, M., Teitelboim, C., Zanelli, J., (1992) Phys. Rev. Lett., 69, p. 1849. , PRLTAO 0031-9007 10.1103/PhysRevLett.69.1849 
504 |a Banãdos, M., Henneaux, M., Teitelboim, C., Zanelli, J., (1993) Phys. Rev. D, 48, p. 1506. , PRVDAQ 0556-2821 10.1103/PhysRevD.48.1506 
504 |a Brown, J.D., Henneaux, M., (1986) Commun. Math. Phys., 104, p. 207. , CMPHAY 0010-3616 10.1007/BF01211590 
504 |a Dotti, G., Oliva, J., Troncoso, R., (2007) Phys. Rev. D, 75, p. 024002. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.024002 
504 |a Ayón-Beato, E., Garbarz, A., Giribet, G., Hassaïne, M., ; Pang, D.-W., J. High Energy Phys., 2009 (10), p. 031. , JHEPFG 1029-8479 10.1088/1126-6708/2009/10/031 
504 |a Adams, A., Maloney, A., Sinha, A., Vásquez, S., J. High Energy Phys., 2009 (3), p. 097. , JHEPFG 1029-8479 10.1088/1126-6708/2009/03/097 
504 |a Nakayama, Y., arXiv:0906.4112; Deser, S., Jackiw, R., Templeton, S., (1982) Phys. Rev. Lett., 48, p. 975. , PRLTAO 0031-9007 10.1103/PhysRevLett.48.975 
520 3 |a We show that three-dimensional massive gravity admits Lifshitz metrics with generic values of the dynamical exponent z as exact solutions. At the point z=3, exact black hole solutions that are asymptotically Lifshitz arise. These spacetimes are three-dimensional analogues of those that were recently proposed as gravity duals for anisotropic scale invariant fixed points. © 2009 The American Physical Society.  |l eng 
593 |a Departamento de Física, CINVESTAV-IPN, Apartado Postal 14-740, México D.F., Mexico 
593 |a Departamento de Física, Universidad de Buenos Aires FCEN, Pabellón 1, 1428, Buenos Aires, Argentina 
593 |a Center for Cosmology and Particle Physics, Physics Department, New York University CCPP - NYU, 4 Washington Place, NY 10003, United States 
593 |a Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile 
700 1 |a Garbarz, A. 
700 1 |a Giribet, G. 
700 1 |a Hassaïne, M. 
773 0 |d 2009  |g v. 80  |k n. 10  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72049099060&doi=10.1103%2fPhysRevD.80.104029&partnerID=40&md5=a45b9ffba294c5c89ee3d6fd01d22bb5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.80.104029  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v80_n10_p_AyonBeato  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v80_n10_p_AyonBeato  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v80_n10_p_AyonBeato  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69287