Short Models for Unit Interval Graphs

We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are inte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lin, M.C
Otros Autores: Soulignac, F.J, Szwarcfiter, J.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04603caa a22005537a 4500
001 PAPER-8317
003 AR-BaUEN
005 20230518203807.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70949092198 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lin, M.C. 
245 1 0 |a Short Models for Unit Interval Graphs 
260 |c 2009 
270 1 0 |m Lin, M.C.; Departamento de Computación, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; email: oscarlin@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bogart, K.P., West, D.B., A short proof that "proper = unit" (1999) Discrete Math., 201 (1-3), pp. 21-23 
504 |a Corneil, D.G., A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs (2004) Discrete Appl. Math., 138 (3), pp. 371-379 
504 |a Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P., Simple linear time recognition of unit interval graphs (1995) Inform. Process. Lett., 55 (2), pp. 99-104 
504 |a Gardi, F., The Roberts characterization of proper and unit interval graphs (2007) Discrete Math., 307 (22), pp. 2906-2908 
504 |a Lin, M.C., Rautenbach, D., Soulignac, F.J., Szwarcfiter, J.L., Powers of Cycles, Powers of Paths and Distance Graphs (2008), Submitted; Lin, M.C., Szwarcfiter, J.L., Unit circular-arc graph representations and feasible circulations (2008) SIAM J. Discrete Math., 22, pp. 409-423 
504 |a Roberts, F.S., Indifference graphs (1969) Proof Techniques in Graph Theory, pp. 139-146. , (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968) 
504 |a Spinrad, J.P., (2003) Efficient graph representations, , American Mathematical Society 
520 3 |a We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are integers in the range 0 to O (n2), solving a problem posed by Gardi (Discrete Math., 307 (22), 2906-2908, 2007). © 2009 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: 1562 
536 |a Detalles de la financiación: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, X456, X143 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: 1 Partially supported by UBACyT Grants X456 and X143, and PICT ANPCyT Grant 1562. 2 Partially supported by UBACyT Grant X456, PICT ANPCyT Grant 1562 and by a grant of the YPF Foundation. 3 Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tec-nológico, CNPq, and Fundac¸ão de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil. 
593 |a Departamento de Computación, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Universidade Federal do Rio de Janeiro, Inst. de Matemática, NCE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brazil 
690 1 0 |a ALGORITHMS AND DATA STRUCTURES 
690 1 0 |a EFFICIENT REPRESENTATION 
690 1 0 |a GRAPH THEORY 
690 1 0 |a PROPER INTERVAL GRAPHS 
690 1 0 |a UNIT INTERVAL GRAPHS 
700 1 |a Soulignac, F.J. 
700 1 |a Szwarcfiter, J.L. 
773 0 |d 2009  |g v. 35  |h pp. 247-255  |k n. C  |p Electron. Notes Discrete Math.  |x 15710653  |t Electronic Notes in Discrete Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70949092198&doi=10.1016%2fj.endm.2009.11.041&partnerID=40&md5=251d36a5216e9994c17568f6f219dcac  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.endm.2009.11.041  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15710653_v35_nC_p247_Lin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15710653_v35_nC_p247_Lin  |y Registro en la Biblioteca Digital 
961 |a paper_15710653_v35_nC_p247_Lin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69270