Changes in hydrogen peroxide homeostasis and cytokinin levels contribute to the regulation of shade-induced senescence in wheat leaves

In a previous work we demonstrated that the suppression of blue light in shaded leaves of wheat increases their senescence rate and the development of oxidative stress symptoms. In order to better understand the interaction between the oxidative metabolism and light spectral quality in the regulatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Causin, H.F
Otros Autores: Roberts, I.N, Criado, M.V, Gallego, S.M, Pena, L.B, Ríos, M.d.C, Barneix, A.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15761caa a22012017a 4500
001 PAPER-8311
003 AR-BaUEN
005 20230518203807.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70349969870 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLSCE 
100 1 |a Causin, H.F. 
245 1 0 |a Changes in hydrogen peroxide homeostasis and cytokinin levels contribute to the regulation of shade-induced senescence in wheat leaves 
260 |c 2009 
270 1 0 |m Causin, H.F.; D.B.B.E., Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, 1428 C.A.B.A., Argentina; email: causin@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Love, A.J., Milner, J.L., Sadanandom, A., Timing is everything: regulatory overlap in plant cell death (2008) Trends Plant Sci., 13, pp. 589-595 
504 |a Causin, H.F., Barneix, A.J., The role of oxidative metabolism in the regulation of leaf senescence by the light environment (2007) IJPDB, 1, pp. 239-244 
504 |a Biswal, V.C., Biswal, B., Photocontrol of leaf senescence (1984) Photochem. Photobiol., 39, pp. 875-879 
504 |a Guiamét, J.J., Willemoes, J.G., Montaldi, E.R., Modulation of progressive leaf senescence by red:far-red ratio of incident light (1989) Bot. Gaz. (London), 150, pp. 148-151 
504 |a Rouseaux, M.C., Hall, A.J., Sánchez, R.A., Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower (1996) Physiol. Plant., 96, pp. 217-224 
504 |a Rousseaux, M.C., Ballaré, C.L., Jordan, E.T., Vierstra, R.D., Directed overexpression of PHYA locally suppresses stem elongation and leaf senescence responses to far-red radiation (1997) Plant Cell Environ., 20, pp. 1551-1558 
504 |a Causin, H.F., Jauregui, R.N., Barneix, A.J., The effect of light spectral quality on leaf senescence and oxidative stress in wheat (2006) Plant Sci., 171, pp. 24-33 
504 |a Causin, H.F., Criado, M.V., Roberts, I.N., Barneix, A.J., La luz azul como factor retardante de la senescencia foliar en trigo (2006) XXVI Reunión Argentina de Fisiología Vegetal, p. 57. , Buenos Aires, Libro de Resúmenes 
504 |a Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T., Hydrogen peroxide and nitric oxide as signalling molecules in plants (2002) J. Exp. Bot., 53, pp. 1237-1247 
504 |a Laloi, C., Apel, K., Danon, A., Reactive oxygen signalling: the latest news (2004) Curr. Opin. Plant Biol., 7, pp. 323-328 
504 |a Gechev, T.S., Hille, J., Hydrogen peroxide as a signal controlling plant programmed cell death (2005) J. Cell Biol., 168, pp. 17-20 
504 |a Kwak, J.M., Nguyen, V., Schroeder, J.I., The role of reactive oxygen species in hormonal responses (2006) Plant Physiol., 141, pp. 323-329 
504 |a Van Breusegem, F., Dat, J.F., Reactive oxygen species in plant cell death (2006) Plant Physiol., 141, pp. 384-390 
504 |a Gapper, C., Dolan, L., Control of plant development by reactive oxygen species (2006) Plant Physiol., 141, pp. 341-345 
504 |a Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Mullineaux, P., Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis (1999) Science, 284, pp. 654-657 
504 |a Mullineaux, P., Karpinski, S., Signal transduction in response to excess light: getting out of the chloroplast (2002) Curr. Opin. Plant Biol., 5, pp. 43-48 
504 |a Pastori, G.M., del Río, L.A., Natural senescence of pea leaves (1997) Plant Physiol., 113, pp. 411-418 
504 |a Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., del Río, L.A., Plant proteases, protein degradation, and oxidative stress: role of peroxisomes (2002) Plant Physiol. Biochem., 40, pp. 521-530 
504 |a Nyström, T., Role of oxidative carbonylation in protein quality control and senescence (2005) EMBO J., 24, pp. 1311-1317 
504 |a Fankhauser, C., Chory, J., Light control of plant development (1997) Annu. Rev. Cell Dev. Biol., 13, pp. 203-229 
504 |a Whitelam, G.C., Devlin, P.F., Light signalling in Arabidopsis (1998) Plant Physiol. Biochem., 36, pp. 125-133 
504 |a Martínez-García, J.F., Santes, C.M., García-Martínez, J.L., The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation (2000) Physiol. Plant., 108, pp. 426-434 
504 |a Morelli, G., Ruberti, I., Shade avoidance responses. Driving auxin along lateral routes (2000) Plant Physiol., 122, pp. 621-626 
504 |a Chory, J., Reinecke, D., Sim, S., Washburn, T., Brenner, M., A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins) (1994) Plant Physiol., 104, pp. 339-347 
504 |a Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Van Der Straeten, D., Ahmad, M., HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana (2007) Plant J., 49, pp. 428-441 
504 |a Richmond, A.E., Lang, A., Effect of kinetin on protein content and survival of detached Xanthium leaves (1957) Science, 125, pp. 650-651 
504 |a Wingler, A., von Schaewen, A., Leegood, R.C., Lea, P.J., Quick, W.P., Regulation of leaf senescence by cytokinin, sugars, and light (1998) Plant Physiol., 116, pp. 329-335 
504 |a Gan, S., Amasino, R.M., Inhibition of leaf senescence by autoregulated production of cytokinin (1995) Science, 270, pp. 1986-1988 
504 |a Jordi, W., Schapendonk, A., Davelaar, E., Stoopen, G.M., Pot, C.S., de Visser, R., van Rhijn, J.A., Amasino, R.M., Increased cytokinin levels in transgenic Psag-12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning (2000) Plant Cell Environ., 23, pp. 279-289 
504 |a Kull, O., Kruijt, B., Acclimation of photosynthesis to light: a mechanistic approach (1999) Funct. Ecol., 13, pp. 24-36 
504 |a Cheeseman, J.M., Hydrogen peroxide concentrations in leaves under natural conditions (2006) J. Exp. Bot., 57, pp. 2435-2444 
504 |a Levine, R.L., Williams, J.A., Stadtman, E.R., Shacter, E., Carbonyl assays for determination of modified proteins (1994) Methods Enzymol., 233, pp. 346-357 
504 |a Havaux, M., Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants (2003) Trends Plant Sci., 8, pp. 409-413 
504 |a Porra, R.J., The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b (2002) Photosynth. Res., 73, pp. 149-156 
504 |a Aebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126 
504 |a Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 
504 |a Roberts, I., Fernández Murray, P., Passeron, S., Barneix, A.J., The activity of the 20S proteasome is maintained in detached wheat leaves during senescence in darkness (2002) Plant Physiol. Biochem., 40, pp. 161-166 
504 |a Criado, M.V., Roberts, I.N., Echeverria, M., Barneix, A.J., Plant growth regulators and induction of leaf senescence in nitrogen-deprived wheat plants (2007) J. Plant Growth Regul., 26, pp. 301-307 
504 |a Lamb, D., Dixon, R.A., The oxidative burst in plant disease resistance (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 251-275 
504 |a Guan, L.M., Scandalios, J.G., Hydrogen peroxide-mediated catalase gene expression in response to wounding (2000) Free Radic. Biol. Med., 28, pp. 1182-1190 
504 |a Pastori, G.M., Foyer, C.H., Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid mediated controls (2002) Plant Physiol., 12, pp. 460-468 
504 |a Joo, J.H., Wang, S., Chen, J.G., Jones, A.M., Fedoroff, N.V., Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone (2005) Plant Cell, 17, pp. 957-970 
504 |a Torres, M.A., Jones, J.D.G., Dangl, J.L., Reactive oxygen species signaling in response to pathogens (2006) Plant Physiol., 141, pp. 373-378 
504 |a Mittler, R., Vanderauwera, S., Gallery, M., Van Breusegem, F., Reactive oxygen network of plants (2004) Trends Plant Sci., 9, pp. 490-498 
504 |a Pitzschke, A., Hirt, H., Mitogen-activated protein kinases and reactive oxygen species signaling in plants (2006) Plant Physiol., 141, pp. 351-356 
504 |a Piñas Fernández, A., Strand, A., Retrograde signalling and plant stress: plastid signals initiate cellular stress responses (2008) Curr. Opin. Plant Biol., 11, pp. 1-5 
504 |a Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inzé, D., van Camp, W., Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants (1997) EMBO J., 16, pp. 4806-4816 
504 |a Polidoros, A.N., Scandalios, J.G., Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.) (1999) Physiol. Plant., 106, pp. 112-120 
504 |a Yang, T., Poovaiah, B.W., Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 4097-41102 
504 |a Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., Foyer, C.H., Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat (2004) J. Exp. Bot., 56, pp. 417-423 
504 |a Orendi, G., Zimmermann, P., Baar, C., Zentgraf, U., Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress (2001) Plant Sci., 161, pp. 301-314 
504 |a Benková, E., Witters, E., Van Dongen, W., Kolář, J., Motyka, V., Brzobohatý, B., Van Onckelen, H.A., Macháčková, I., Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment (1999) Plant Physiol., 121, pp. 245-251 
504 |a Kurepin, L.V., Emery, R.J.N., Pharis, R.P., Reid, D.M., Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth (2007) J. Exp. Bot., 58, pp. 2145-2157 
504 |a Synková, H., Semorádová, S., Schnablová, R., Witters, E., Hušák, M., Valcke, R., Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny (2006) Biol. Plant., 50, pp. 31-41 
504 |a Zavaleta-Mancera, H.A., López-Delgado, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-García, C., Vargas-Suárez, M., Ougham, H., Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence (2007) J. Plant Physiol., 164, pp. 1572-1582 
504 |a Wingler, A., Purdy, S., MacLean, J.A., Pourtau, N., The role of sugars in integrating environmental signals during the regulation of leaf senescence (2006) J. Exp. Bot., 57, pp. 391-399 
520 3 |a In a previous work we demonstrated that the suppression of blue light in shaded leaves of wheat increases their senescence rate and the development of oxidative stress symptoms. In order to better understand the interaction between the oxidative metabolism and light spectral quality in the regulation of leaf senescence, we studied the evolution of H2O2 concentration, protein oxidation, proteolytic activity and cytokinin content in excised leaves, either illuminated (control, "C") or shaded under blue ("B", high blue light transmission) or green ("G", very low blue light transmission) light filters. H2O2 concentration significantly increased during the first 9 h after treatment initiation, an effect that was consistently higher in treatments B and C. Leaves from these treatments showed lower chlorophyll and protein degradation rates, lower concentration of oxidized proteins, and maintained higher levels of the cytokinin isopentenyl-adenosine than those from treatment G. When moderate H2O2 concentrations were supplied during 6-9 h after the onset of the shade treatments, senescence rate in treatment G was delayed, while the opposite effect was observed in the presence of the H2O2 scavengers catalase and, to a lesser extent, dimethylthiourea. These effects were accompanied by an increment or a decrement, respectively, of catalase activity, suggesting that the early changes in H2O2 homeostasis in leaves from treatments B and C may contribute to the prevention rather than to the induction of further oxidative damage. Altogether our results show that the suppression of blue light transmission in shaded leaves act as a stress signal that increases their sensitivity to oxidative stress and accelerates cell death. © 2009 Elsevier Ireland Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2004-26217 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5233 
536 |a Detalles de la financiación: The authors thank Dr. R. Brouquisse (UMR Interactions Plantes Microorganismes & Santé Végétale, Centre de Recherche INRA – Agrobiotech de Sophia Antipolis, France) for his generous donation of the antibody against maize 20S proteasome. This research was supported by the ANPCyT, Argentina (PICT 2004-26217); CONICET, Argentina (PIP 5233), and the University of Buenos Aires. Appendix A 
593 |a D.B.B.E., Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, 1428 C.A.B.A., Argentina 
593 |a IBYF, CONICET, Facultad de Agronomía, Av. San Martín 4453, 1417 C.A.B.A., Argentina 
593 |a CONICET, Cátedra de Química Biológica Vegetal, Dto. de Química Biológica, Junín 956, 1113 C.A.B.A., Argentina 
593 |a CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, 1428 C.A.B.A., Argentina 
690 1 0 |a CATALASE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a LEAF SENESCENCE 
690 1 0 |a LIGHT SPECTRAL QUALITY 
690 1 0 |a OXIDATIVE METABOLISM 
690 1 0 |a TRITICUM AESTIVUM 
690 1 0 |a TRITICUM AESTIVUM 
700 1 |a Roberts, I.N. 
700 1 |a Criado, M.V. 
700 1 |a Gallego, S.M. 
700 1 |a Pena, L.B. 
700 1 |a Ríos, M.d.C. 
700 1 |a Barneix, A.J. 
773 0 |d 2009  |g v. 177  |h pp. 698-704  |k n. 6  |p Plant Sci.  |x 01689452  |w (AR-BaUEN)CENRE-6512  |t Plant Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349969870&doi=10.1016%2fj.plantsci.2009.08.014&partnerID=40&md5=96fa0acf8b81eb40e0cd1ae7904e8a08  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.plantsci.2009.08.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01689452_v177_n6_p698_Causin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689452_v177_n6_p698_Causin  |y Registro en la Biblioteca Digital 
961 |a paper_01689452_v177_n6_p698_Causin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69264