Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae)

The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lattuca, M.E
Otros Autores: Malanga, G., Hurtado, C.A, Pérez, A.F, Calvo, J., Puntarulo, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15930caa a22015737a 4500
001 PAPER-8310
003 AR-BaUEN
005 20230518203807.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-72649106438 
024 7 |2 cas  |a alpha tocopherol, 1406-18-4, 1406-70-8, 52225-20-4, 58-95-7, 59-02-9; ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; beta carotene, 7235-40-7; catalase, 9001-05-2; lipid, 66455-18-3; Antioxidants; Free Radicals; Reactive Oxygen Species; Water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CBPBB 
100 1 |a Lattuca, M.E. 
245 1 0 |a Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae) 
260 |c 2009 
270 1 0 |m Puntarulo, S.; Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; email: susanap@ffyb.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Abele, D., Puntarulo, S., Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish (2004) Comp. Biochem. Physiol., 138, pp. 405-415 
504 |a Abele, D., Burlando, B., Viarengo, A., Portner, H.O., Exposure to elevated temperatures and oxidative stress and antioxidante response in the Antarctic intertidal limpet Nacella concinna (1998) Comp. Biochem. Physiol. B, 120, pp. 425-435 
504 |a Abele, D., Philipp, E., González, P.M., Puntarulo, S., Marine invertebrate mitochondria and oxidative stress (2007) Front. Biosci., 12, pp. 933-946. , http://www.bioscience.org, http://www.bioscience.org 
504 |a Aebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126 
504 |a Ahmad, I., Maria, V.L., Oliveira, M., Serafim, A., Bebianno, M.J., Pacheco, M., Santos, M.A., DNA damage and lipid peroxidation vs. protection responses in the gill of Dicentrarchus labrax L. from a contaminated coastal lagoon (Ria de Aveiro, Portugal) (2008) Sci. Total Environ., 406, pp. 298-307 
504 |a Aksnes, A., Njaa, L.R., Cabalase, glutathione peroxidase, and superoxide dismutase in different fish species (1981) Comp. Biochem. Physiol. B, 69, pp. 893-896 
504 |a Almroth, B.C., Sturve, J., Berglund, A., Förlin, L., Oxidative damage in eelpout (Zoarces viviparous), measured as protein carbonyls and TBARS, as biomarkers (2005) Aquat. Toxicol., 73, pp. 171-180 
504 |a Ansaldo, M., Luquet, C., Evelson, P.A., Polo, J.M., Llesuy, S., Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks (2000) Polar Biol., 23, pp. 160-165 
504 |a Bagnyukova, T.V., Lushchak, O.V., Storey, K.B., Lushchak, V.I., Oxidative stress and antioxidant defense by goldfish tissues to acute change of temperature from 3 to 23 °C (2007) J. Therm. Biol., 32, pp. 227-234 
504 |a Clermont, G., Lecour, S., Lahet, J.-J., Siohan, P., Vergely, C., Chevet, D., Rifle, G., Rochette, L., Alteration in plasma antioxidant capacities in chronic renal failure and hemodialysis patients: a possible explanation for the increased cardiovascular risk in these patients (2000) Cardiovasc. Res., 47, pp. 618-623 
504 |a Courderot-Masuyer, C., Lahet, J.J., Verges, B., Brun, J.M., Rochette, L., Ascorbyl free radical release in diabetic patients (2000) Cell. Mol. Biol (Noisy-le-grand), 46, pp. 1397-1401 
504 |a Desai, I., Vitamin E analysis methods for animal tissues (1984) Methods Enzymol., 105, pp. 138-146 
504 |a Dikolova, A.E., Kadiiska, M.B., Mason, R.P., An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication role of the Fenton reaction (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 13549-13553 
504 |a Dyer, B.S., Revisión sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes) (2000) Estud. Oceanol., 19, pp. 99-127 
504 |a Evans, D.H., Piermarini, P.M., Choe, K.P., The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste (2005) Physiol. Rev., 85, pp. 97-177 
504 |a Galleano, M., Aimo, L., Puntarulo, S., Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator (2002) Toxicol. Lett., 133, pp. 193-201 
504 |a Gieseg, S.P., Cuddihy, S., Hill, J.V., Davison, W., A comparison of plasma vitamin C and E levels in two Antarctic an two temperate water fish species (2000) Comp. Biochem. Physiol. B, 125, pp. 371-378 
504 |a Giulivi, C., Cadenas, E., The reaction of ascorbic acid with different heme iron redox states of myoglobin (1993) FEBS Lett., 332, pp. 287-290 
504 |a Gonzalez, P.M., Abele, D., Puntarulo, S., Iron and radical content in Mya arenaria. Possible sources of NO generation (2008) Aquat. Toxicol., 89, pp. 122-128 
504 |a Halliwell, B., Oxidants and human disease: some new concepts (1987) FASEB J., 1, pp. 358-364 
504 |a Halliwell, B., Gutteridge, J.M.C., (1989) Free Radicals in Biology and Medicine. 2nd ed, pp. 86-187. , Clarendon Press, Oxford 
504 |a Heise, K., Puntarulo, S., Pörtner, H.O., Abele, D., Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress (2003) Comp. Biochem. Physiol. C, 134, pp. 79-90 
504 |a Joseph, J.D., Lipid composition of marine and estuarine invertebrates. Part II. Mollusca (1982) Prog. Lipid Res., 21, pp. 109-153 
504 |a Jurkiewicz, B.A., Buettner, G.R., Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study (1994) Photochem. Photobiol., 59, pp. 1-4 
504 |a Kamunde, C., Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure (2009) Aquat. Toxicol., 91, pp. 291-301 
504 |a Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D.R., Lai, C., Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex (1996) Biochim. Biophys. Acta, 1289, pp. 362-368 
504 |a Kozak, R.G., Malanga, G., Caro, A., Puntarulo, S., Ascorbate free radical content in photosynthetic organisms after exposure to ultraviolet-B (1997) Recent Res. Dev. Plant Physiol., 1, pp. 233-239 
504 |a Kutnink, M.A., Hawkes, W.C., Schaus, E.E., Omaye, S.T., An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components (1987) Anal. Biochem., 166, pp. 424-430 
504 |a Lai, E.K., Crossley, C., Sridhar, R., Misra, H.P., Janzen, E.G., McCay, P.B., In vivo spin trapping of free radicals generated in brain, spleen, and liver during γ radiation of mice (1986) Arch. Biochem. Biophys., 244, pp. 156-160 
504 |a Lowry, O.H., Rosebrough, N.J., Farr, L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275 
504 |a Luo, Y., Su, Y., Lin, R., Shi, H., Wang, X., 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method (2006) Chemosphere, 65, pp. 1064-1073 
504 |a Lushchak, V.I., Bagnyukova, T.V., Effects of different environmental oxygen levels on free radical processes in fish (2006) Comp. Biochem. Physiol. B, 144, pp. 283-289 
504 |a Lushchak, V.I., Bagnyukova, T.V., Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii (2007) Comp. Biochem. Physiol., 148 B, pp. 390-397 
504 |a Malanga, G., Estevez, M.S., Calvo, J., Puntarulo, S., Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel (2004) Aquat. Toxicol., 69, pp. 299-309 
504 |a Mason, R.P., Hanna, P.H., Burkitt, M.J., Kadiiska, M.B., Detection of oxygen-derived radical in biological systems using electron spin resonance (1994) Environ. Health Perspect., 102, pp. 33-36 
504 |a Misra, H.P., Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase (1972) J. Biol. Chem., 247, pp. 3170-3175 
504 |a Oakes, K.D., McMaster, M.E., Van Der Kraak, G.J., Oxidative stress resposes in longnose sucker (Catostomus catostomus) exposed to pulp and paper mill and municipal sewage effluents (2004) Aquat. Toxicol., 67, pp. 255-271 
504 |a Parihar, M.S., Dubay, A.K., Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase (1995) Comp. Biochem. Physiol. C, 112, pp. 309-313 
504 |a Philipp, E., Pörtner, H.O., Abele, D., Mitochondrial ageing of a polar and a temperate mud clam (2005) Mech. Ageing Dev., 126, pp. 610-619 
504 |a Rice-Evans, C.A., Diplock, A.T., Symins, M.C.R., Techniques in free radical research (1991) Laboratory Techniques in Biochemistry and Molecular Biology, pp. 147-149. , Burton R.H., and Knippenberg P.H. (Eds), Elsevier, Amsterdam 
504 |a Roginsky, V.A., Stegmann, H.B., Ascorbyl radical as natural indicator of oxidative stress: quantitative regularities (1994) Free Radic. Biol. Med., 17, pp. 93-103 
504 |a Vergely, C., Maupoil, V., Benderitter, M., Rochette, L., Influence of the severity of myocardial ischemia on the intensity of ascorbyl free radical release and on postischemic recovery during reperfusion (1998) Free Radic. Biol. Med., 24, pp. 470-479 
504 |a Wilhelm Filho, D., Reactive oxygen species, antioxidants and fish mitochondria (2007) Front. Biosci., 12, pp. 1229-1237 
504 |a Wilhelm Filho, D., Marcon, J.L., Antioxidant defenses in fish of the Amazon (1996) Physiology and Biochemistry of the Fishes of the Amazon, pp. 299-312. , Val A.L., Almeida-Val V.M.L., and Randal D.J. (Eds), INPA, Manaus 
504 |a Wilhelm Filho, D., Giulivi, D., Boveris, A., Antioxidant defenses in marine fish: I. Teleosts (1993) Comp. Biochem. Physiol. C, 106, pp. 409-413 
504 |a Wilhelm Filho, D., Torres, M.A., Marcon, J.L., Fraga, C.G., Boveris, A., Antioxidant defenses in vertebrates-emphasis on fish and mammals (2000) Trends Comp. Biochem. Physiol., 7, pp. 37-45 
504 |a Wilhelm Filho, D., Torres, M.A., Zaniboni-Filho, E., Pedrosa, R.C., Effect of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapiara, Leporinus elongatus (Valenciennes, 1847) (2005) Aquaculture, 244, pp. 349-357 
504 |a Zielinski, S., Pörtner, H.O., Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age? (2000) Comp. Biochem. Physiol. B, 125, pp. 147-160 
520 3 |a The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of α-tocopherol, β-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A•) content showed no significant differences between gills and liver. The ascorbate (AH-) content was 12 ± 2 and 159 ± 28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A•/AH-. The ratio A•/AH- was significantly different between organs, (6 ± 2)10- 5 and (5 ± 2)10- 6, for the gills and the liver, respectively. Both, lipid radical content/α-tocopherol content and lipid radical content/β-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions. © 2009 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, B017 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 38161, PICT 11817 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 6187, PIP 1171 
536 |a Detalles de la financiación: This study was supported by grants from the University of Buenos Aires ( B017 ), ANPCyT ( PICT 11817 , PICT 38161 ) and CONICET ( PIP 1171 , PIP 6187 ). SP and GM are career investigators from CONICET. The authors are grateful to C. Luizon, D. Aureliano and J. Bouzzo for fieldwork and technical assistance. 
593 |a Laboratorio de Ecofisiología, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Tierra del Fuego, Argentina 
593 |a Universidad de los Andes, Cali, Colombia 
593 |a Laboratorio de Ecología de Organismos Bentónicos Marinos, Departamento de Ecología, Genética y Evolución, FCEN, Buenos Aires, Argentina 
593 |a Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a BEAGLE CHANNEL 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a ODONTESTHES NIGRICANS 
690 1 0 |a OXIDATIVE METABOLISM 
690 1 0 |a ALPHA TOCOPHEROL 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a BETA CAROTENE 
690 1 0 |a CATALASE 
690 1 0 |a LIPID 
690 1 0 |a RADICAL 
690 1 0 |a THIOBARBITURIC ACID REACTIVE SUBSTANCE 
690 1 0 |a AEROBIC METABOLISM 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ARTICLE 
690 1 0 |a CELL DAMAGE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENVIRONMENTAL EXPOSURE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FISH DISEASE 
690 1 0 |a GILL 
690 1 0 |a LIPID OXIDATION 
690 1 0 |a LIVER METABOLISM 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a ELECTRON SPIN RESONANCE SPECTROSCOPY 
690 1 0 |a FEMALE 
690 1 0 |a FISHES 
690 1 0 |a FREE RADICALS 
690 1 0 |a GILLS 
690 1 0 |a INTRACELLULAR SPACE 
690 1 0 |a LIPID METABOLISM 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a LIVER 
690 1 0 |a MALE 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a WATER 
690 1 0 |a ATHERINOPSIDAE 
690 1 0 |a ODONTESTHES NIGRICANS 
690 1 0 |a PISCES 
651 4 |a ARGENTINA ELONGATA 
700 1 |a Malanga, G. 
700 1 |a Hurtado, C.A. 
700 1 |a Pérez, A.F. 
700 1 |a Calvo, J. 
700 1 |a Puntarulo, S. 
773 0 |d 2009  |g v. 154  |h pp. 406-411  |k n. 4  |p Comp. Biochem. Physiol. B Biochem. Mol. Biol.  |x 10964959  |w (AR-BaUEN)CENRE-4255  |t Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72649106438&doi=10.1016%2fj.cbpb.2009.08.004&partnerID=40&md5=284c962bdf422913bcd4b0578fbd0436  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.cbpb.2009.08.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10964959_v154_n4_p406_Lattuca  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10964959_v154_n4_p406_Lattuca  |y Registro en la Biblioteca Digital 
961 |a paper_10964959_v154_n4_p406_Lattuca  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69263