The human papillomavirus E7-E2 interaction mechanism in vitro reveals a finely tuned system for modulating available E7 and E2 proteins

Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) le...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Smal, C.
Otros Autores: Wetzler, D.E, Dantur, K.I, Chemes, L.B, Garcia-Alai, M.M, Dellarole, M., Alonso, L.G, Gaston, K., De Prat-Gay, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17940caa a22017777a 4500
001 PAPER-8215
003 AR-BaUEN
005 20230518203802.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-72449169953 
024 7 |2 cas  |a DNA-Binding Proteins; E2 protein, Human papillomavirus type 16; Oncogene Proteins, Viral; oncogene protein E7, Human papillomavirus type 16; ras Proteins, 3.6.5.2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BICHA 
100 1 |a Smal, C. 
245 1 4 |a The human papillomavirus E7-E2 interaction mechanism in vitro reveals a finely tuned system for modulating available E7 and E2 proteins 
260 |c 2009 
270 1 0 |m De Prat-Gay, G.; Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas, CONICET, Patricias Argentinas 435, 1405 Buenos Aires, Argentina; email: gpg@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Zur Hausen, H., Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis (2000) J. Natl. Cancer Inst., 92, pp. 690-698 
504 |a (2007) Summary Report on HPV and Cervical Cancer Statistics in Argentina, , World Health Organization HPV Information Center, Barcelona, Spain 
504 |a Frazer, I., Vaccines for papillomavirus infection (2002) Virus Res., 89, pp. 271-274 
504 |a Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes (1989) Journal of Virology, 63 (10), pp. 4417-4421 
504 |a Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., Howley, P.M., The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 (1990) Cell, 63 (6), pp. 1129-1136 
504 |a Boyer, S.N., Wazer, D.E., Band, V., E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway (1996) Cancer Res., 56, pp. 4620-4624 
504 |a Barbosa, M.S., Edmonds, C., Fisher, C., Schiller, J.T., Lowy, D.R., Vousden, K.H., The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation (1990) EMBO Journal, 9 (1), pp. 153-160 
504 |a Ben-Saadon, R., Fajerman, I., Ziv, T., Hellman, U., Schwartz, A.L., Ciechanover, A., The tumor suppressor protein p16-(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue (2004) J. Biol. Chem., 279, pp. 41414-41421 
504 |a Rechsteiner, M., Rogers, S.W., PEST sequences and regulation by proteolysis (1996) Trends Biochem. Sci., 21, pp. 267-271 
504 |a Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., Howley, P.M., Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein (1992) J. Virol., 66, pp. 2418-2427 
504 |a Lin, R., Beauparlant, P., Makris, C., Meloche, S., Hiscott, J., Phosphorylation of IκBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability (1996) Mol. Cell. Biol., 16, pp. 1401-1409 
504 |a Garcia-Alai, M.M., Gallo, M., Salame, M., Wetzler, D.E., McBride, A.A., Paci, M., Cicero, D.O., De Prat-Gay, G., Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover (2006) Structure, 14, pp. 309-319 
504 |a Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., De Prat-Gay, G., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41 (33), pp. 10510-10518. , DOI 10.1021/bi025579n 
504 |a Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., De Prat-Gay, G., The HPV16 E7 Viral Oncoprotein Self-Assembles into Defined Spherical Oligomers (2004) Biochemistry, 43 (12), pp. 3310-3317. , DOI 10.1021/bi036037o 
504 |a Alonso, L.G., Smal, C., Garcia-Alai, M.M., Chemes, L., Salame, M., De Prat-Gay, G., Chaperone holdase activity of human papillomavirus E7 oncoprotein (2006) Biochemistry, 45 (3), pp. 657-667. , DOI 10.1021/bi0522549 
504 |a Dantur, K., Alonso, L., Castano, E., Morelli, L., Centeno-Crowley, J.M., Vighi, S., De Prat-Gay, G., Cytosolic accumulation of HPV16 E7 oligomers supports different transformation routes for the prototypic viral oncoprotein: The amyloid-cancer connection (2009) Int. J. Cancer, 125, pp. 1902-1911 
504 |a Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586 
504 |a Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Gorlach, M., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25 (44), pp. 5953-5959. , DOI 10.1038/sj.onc.1209584, PII 1209584 
504 |a Garcia-Alai, M.M., Alonso, L.G., De Prat-Gay, G., The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein (2007) Biochemistry, 46, pp. 10405-10412 
504 |a Thierry, F., Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma (2009) Virology, 384, pp. 375-379 
504 |a Hamid, N.A., Brown, C., Gaston, K., The regulation of cell proliferation by the papillomavirus early proteins (2009) Cell. Mol. Life Sci., 66, pp. 1700-1717 
504 |a Bechtold, V., Beard, P., Raj, K., Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA (2003) Journal of Virology, 77 (3), pp. 2021-2028. , DOI 10.1128/JVI.77.3.2021-2028.2003 
504 |a Wu, S.-Y., Lee, A.-Y., Hou, S.Y., Kemper, J.K., Erdjument-Bromage, H., Tempst, P., Chiang, C.-M., Brd4 links chromatin targeting to HPV transcriptional silencing (2006) Genes and Development, 20 (17), pp. 2383-2396. , http://www.genesdev.org/cgi/reprint/20/17/2383, DOI 10.1101/gad.1448206 
504 |a Poddar, A., Reed, S.C., McPhillips, M.G., Spindler, J.E., McBride, A.A., The human papillomavirus type 8 E2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes (2009) J. Virol., 83, pp. 640-650 
504 |a Morgan, I.M., Donaldson, M.M., The papillomavirus transcription/replication factor E2: Structure, function, cancer and therapy (2006) Papillomavirus Research: from Natural History to Vaccines and Beyond, pp. 73-82. , (Saveria Campo, M., Ed.) Caisreir Academic Press, Wymondham, U.K 
504 |a Hegde, R.S., The papillomavirus E2 proteins: Structure, function, and biology (2002) Annu. Rev. Biophys. Biomol. Struct., 31, pp. 343-360 
504 |a Kalantari, M., Karlsen, F., Kristensen, G., Holm, R., Hagmar, B., Johansson, B., Disruption of the E1 and E2 reading frames of HPV 16 in cervical carcinoma is associated with poor prognosis (1998) Int. J. Gynecol. Pathol., 17, pp. 146-153 
504 |a Graham, D.A., Herrington, C.S., HPV-16 E2 gene disruption and sequence variation in CIN 3 lesions and invasive squamous cell carcinomas of the cervix: Relation to numerical chromosome abnormalities (2000) Mol. Pathol., 53, pp. 201-206 
504 |a Goodwin, E.C., Naeger, L.K., Breiding, D.E., Androphy, E.J., DiMaio, D., Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines (1998) J. Virol., 72, pp. 3925-3934 
504 |a Gammoh, N., Isaacson, E., Tomaic, V., Jackson, D.J., Doorbar, J., Banks, L., Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2 (2009) Oncogene, 28, pp. 2299-2304 
504 |a Gammoh, N., Grm, H.S., Massimi, P., Banks, L., Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator (2006) Journal of Virology, 80 (4), pp. 1787-1797. , DOI 10.1128/JVI.80.4.1787-1797.2006 
504 |a Ferreiro, D.U., Lima, L.M., Nadra, A.D., Alonso, L.G., Goldbaum, F.A., De Prat-Gay, G., Distinctive cognate sequence discrimination, bound DNA conformation, and binding modes in the E2 C-terminal domains from prototype human and bovine papillomaviruses (2000) Biochemistry, 39, pp. 14692-14701 
504 |a Pattillo, R.A., Hussa, R.O., Story, M.T., Ruckert, A.C., Shalaby, M.R., Mattingly, R.F., Tumor antigen and human chorionic gonadotropin in CaSki cells: A new epidermoid cervical cancer cell line (1977) Science, 196, pp. 1456-1458 
504 |a Cerutti, M.L., Centeno, J.M., De Prat-Gay, G., Goldbaum, F.A., Antibody response to a viral transcriptional regulator (2003) FEBS Letters, 534 (1-3), pp. 202-206. , DOI 10.1016/S0014-5793(02)03850-4 
504 |a De Prat-Gay, G., Fersht, A.R., Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue (1994) Biochemistry, 33, pp. 7957-7963 
504 |a Lakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, , Plenum Press, New York 
504 |a Mok, Y.K., De Prat-Gay, G., Butler, P.J., Bycroft, M., Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain (1996) Protein Sci., 5, pp. 310-319 
504 |a Clements, A., Johnston, K., Mazzarelli, J.M., Ricciardi, R.P., Marmorstein, R., Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein (2000) Biochemistry, 39 (51), pp. 16033-16045. , DOI 10.1021/bi002111g 
504 |a Hegde, R.S., Grossman, S.R., Laimins, L.A., Sigler, P.B., Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target (1992) Nature, 359, pp. 505-512 
504 |a Carter, P.J., Winter, G., Wilkinson, A.J., Fersht, A.R., The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus) (1984) Cell, 38, pp. 835-840 
504 |a Ferreiro, D.U., Dellarole, M., Nadra, A.D., De Prat-Gay, G., Free energy contributions to direct readout of a DNA sequence (2005) J. Biol. Chem., 280, pp. 32480-32484 
504 |a Wetzler, D.E., Gallo, M., Melis, R., Eliseo, T., Nadra, A.D., Ferreiro, D.U., Paci, M., De Prat-Gay, G., A strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation (2009) Biopolymers, 91, pp. 432-443 
504 |a Munger, K., Baldwin, A., Edwards, K.M., Hayakawa, H., Nguyen, C.L., Owens, M., Grace, M., Huh, K., Mechanisms of human papillomavirus-induced oncogenesis (2004) J. Virol., 78, pp. 11451-11460 
504 |a De Prat-Gay, G., Gaston, K., Cicero, D.O., The papillomavirus E2 DNA binding domain (2008) Front. Biosci., 13, pp. 6006-6021 
504 |a Grm, H.S., Massimi, P., Gammoh, N., Banks, L., Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein (2005) Oncogene, 24 (33), pp. 5149-5164. , DOI 10.1038/sj.onc.1208701 
504 |a Wetzler, D.E., Castano, E.M., De Prat-Gay, G., A quasi-spontaneous amyloid route in a DNA binding gene regulatory domain: The papillomavirus HPV16 E2 protein (2007) Protein Sci., 16, pp. 744-754 
504 |a Sim, J., Ozgur, S., Lin, B.Y., Yu, J.H., Broker, T.R., Chow, L.T., Griffith, J., Remodeling of the human papillomavirus type 11 replication origin into discrete nucleoprotein particles and looped structures by the E2 protein (2008) J. Mol. Biol., 375, pp. 1165-1177 
504 |a Mok, Y.K., (1996) Studies on the DNA Binding Domain from Human Papillomavirus Strain 16 E2 Protein, , Ph.D. Thesis, University of Cambridge, Cambridge, U.K 
504 |a De Prat-Gay, G., Nadra, A.D., Corrales-Izquierdo, F.J., Alonso, L.G., Ferreiro, D.U., Mok, Y.K., The folding mechanism of a dimeric β-barrel domain (2005) J. Mol. Biol., 351, pp. 672-682 
504 |a Eliseo, T., Sanchez, I.E., Nadra, A.D., Dellarole, M., Paci, M., De Prat-Gay, G., Cicero, D.O., Indirect DNA readout on the protein side: Coupling between histidine protonation, global structural cooperativity, dynamics and DNA binding of the human papillomavirus type 16 E2C domain (2009) J.Mol. Biol., 388, pp. 327-344 
520 3 |a Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) leads to ionic strength-dependent hetero-oligomerization even at the lowest concentrations measurable. Titration experiments followed by light scattering and native gel electrophoresis show insoluble oligomeric complexes with a ≥2000 nm diameter and intermediate soluble complexes 40 and 115 nm in diameter, respectively, formed in excess of E2C. Adiscrete oligomeric soluble complex formed in excess of E7 displays a diameter of 12 nm. The N-terminal domain of E7 interacts with E2C with a KD of 0.1 μM, where the stretch of residues 25-40 of E7, encompassing both a PEST motif and phosphorylation sites, is sufficient for the interaction. Displacement of the soluble E7-E2C complex by an E2 site DNA duplex and site-directed mutagenesis indicate that the protein-protein interface involves the DNA binding helix of E2. The formation of complexes of different sizes and properties in excess of either of the viral proteins reveals a finely tuned mechanism that could regulate the intracellular levels of both proteins as infection and transformation progress. Sequestering E2 into E7-E2 oligomers provides a possible additional route to uncontrolled E7 expression, in addition and prior to the disruption of the E2 gene during viral integration into the host genome. © 2009 American Chemical Society.  |l eng 
593 |a Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas, CONICET, Patricias Argentinas 435, 1405 Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom 
593 |a Medical Research Council, Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom 
690 1 0 |a DIFFERENT SIZES 
690 1 0 |a DNA BINDING 
690 1 0 |a DNA BINDING DOMAIN 
690 1 0 |a DNA DUPLEXES 
690 1 0 |a E7 ONCOPROTEIN 
690 1 0 |a GEL ELECTROPHORESIS 
690 1 0 |a HETERO-OLIGOMERIZATION 
690 1 0 |a HUMAN PAPILLOMAVIRUS 
690 1 0 |a IN-VITRO 
690 1 0 |a INTERACTION MECHANISMS 
690 1 0 |a INTRACELLULAR LEVELS 
690 1 0 |a N-TERMINAL DOMAINS 
690 1 0 |a OLIGOMERIC COMPLEXES 
690 1 0 |a PHOSPHORYLATION SITES 
690 1 0 |a PROTEIN-PROTEIN INTERFACE 
690 1 0 |a SITE DIRECTED MUTAGENESIS 
690 1 0 |a SOLUBLE COMPLEXES 
690 1 0 |a VIRAL PROTEINS 
690 1 0 |a BINDING SITES 
690 1 0 |a COMPLEXATION 
690 1 0 |a DNA 
690 1 0 |a ELECTROPHORESIS 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a NUCLEIC ACIDS 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a OLIGOMERS 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a TITRATION 
690 1 0 |a TRANSCRIPTION 
690 1 0 |a PROTEINS 
690 1 0 |a PROTEIN E7 
690 1 0 |a PROTEIN VP2 
690 1 0 |a AMINO TERMINAL SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a DNA BINDING 
690 1 0 |a GEL ELECTROPHORESIS 
690 1 0 |a HUMAN 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a NONHUMAN 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN INTERACTION 
690 1 0 |a TITRIMETRY 
690 1 0 |a WART VIRUS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a CELL LINE, TUMOR 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a DNA-BINDING PROTEINS 
690 1 0 |a HUMAN PAPILLOMAVIRUS 16 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a ONCOGENE PROTEINS, VIRAL 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a RAS PROTEINS 
690 1 0 |a VIRUS INTEGRATION 
690 1 0 |a HUMAN PAPILLOMAVIRUS 
650 1 7 |2 spines  |a GENES 
700 1 |a Wetzler, D.E. 
700 1 |a Dantur, K.I. 
700 1 |a Chemes, L.B. 
700 1 |a Garcia-Alai, M.M. 
700 1 |a Dellarole, M. 
700 1 |a Alonso, L.G. 
700 1 |a Gaston, K. 
700 1 |a De Prat-Gay, G. 
773 0 |d 2009  |g v. 48  |h pp. 11939-11949  |k n. 50  |p Biochemistry  |x 00062960  |w (AR-BaUEN)CENRE-755  |t Biochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72449169953&doi=10.1021%2fbi901415k&partnerID=40&md5=7a3a3f82fae4f96128bd391dd6fab7ce  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/bi901415k  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00062960_v48_n50_p11939_Smal  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v48_n50_p11939_Smal  |y Registro en la Biblioteca Digital 
961 |a paper_00062960_v48_n50_p11939_Smal  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69168