Role of 11β-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure

Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yeyati, N.L
Otros Autores: Altuna, M.E, Damasco, M.C, Mac Laughlin, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14101caa a22015377a 4500
001 PAPER-8200
003 AR-BaUEN
005 20230518203801.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-75649147844 
024 7 |2 cas  |a aldosterone, 52-39-1, 6251-69-0; creatinine, 19230-81-0, 60-27-5; potassium, 7440-09-7; sodium, 7440-23-5; spironolactone, 52-01-7; 11-beta-Hydroxysteroid Dehydrogenase Type 2, 1.1.1.146; Aldosterone, 52-39-1; Potassium, 7440-09-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a RBPMB 
100 1 |a Yeyati, N.L. 
245 1 0 |a Role of 11β-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure 
260 |c 2010 
270 1 0 |m Mac Laughlin, M. A.; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, calle Paraguay, 2155, 6th, 1421 Buenos Aires, Argentina; email: mmaclaughlin@fmed.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Gennari, F.J., Segal, A.S., Hyperkalemia: An adaptive response in chronic renal insufficiency (2002) Kidney Int, 62, pp. 1-9 
504 |a Musso, C.G., Miguel, R., Algranati, L., Farias, E.R., Renal potassium excretion: Comparison between chronic renal disease patients and old people (2005) Int Urol Nephrol, 37, pp. 167-170 
504 |a Bourgoignie, J.J., Gavellas, G., Van Putten, V., Berl, T., Potassium-aldosterone response in dogs with chronic renal insufficiency (1985) Miner Electrolyte Metab, 11, pp. 150-154 
504 |a Musso, C.G., Potassium metabolism in patients with chronic kidney disease (CKD), Part I: Patients not on dialysis (stages 3-4) (2004) Int Urol Nephrol, 36, pp. 465-468 
504 |a Hene, R.J., Boer, P., Koomans, H.A., Mees, E.J., Plasma aldosterone concentrations in chronic renal disease (1982) Kidney Int, 21, pp. 98-101 
504 |a Navaneethan, S.D., Nigwekar, S.U., Sehgal, A.R., Strippoli, G.F., Aldosterone antagonists for preventing the progression of chronic kidney disease (2009) Cochrane Database Syst Rev, , CD007004 
504 |a Hene, R.J., Koomans, H.A., Boer, P., Dorhout Mees, E.J., Effect of high-dose aldosterone infusions on renal electrolyte excretion in patients with renal insufficiency (1987) Am J Nephrol, 7, pp. 33-37 
504 |a Berl, T., Katz, F.H., Henrich, W.L., de Torrente, A., Schrier, R.W., Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure (1978) Kidney Int, 14, pp. 228-235 
504 |a Todd-Turla, K.M., Schnermann, J., Fejes-Toth, G., Naray-Fejes-Toth, A., Smart, A., Killen, P.D., Distribution of mineralocorticoid and glucocorticoid receptor mRNA along the nephron (1993) Am J Physiol, 264, pp. F781-F791 
504 |a Arriza, J.L., Weinberger, C., Cerelli, G., Glaser, T.M., Handelin, B.L., Housman, D.E., Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor (1987) Science, 237, pp. 268-275 
504 |a Escher, G., Frey, B.M., Frey, F.J., 11 beta-hydroxysteroid dehydrogenase - why is it important for the nephrologist? (1995) Nephrol Dial Transplant, 10, pp. 1506-1509 
504 |a Funder, J.W., Pearce, P.T., Smith, R., Smith, A.I., Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated (1988) Science, 242, pp. 583-585 
504 |a Zallocchi, M.L., Matkovic, L., Calvo, J.C., Damasco, M.C., Adrenal gland involvement in the regulation of renal 11beta-hydroxysteroid dehydrogenase 2 (2004) J Cell Biochem, 92, pp. 591-602 
504 |a Biller, K.J., Unwin, R.J., Shirley, D.G., Distal tubular electrolyte transport during inhibition of renal 11beta-hydroxysteroid dehydrogenase (2001) Am J Physiol Renal Physiol, 280, pp. F172-F179 
504 |a Morris, D.J., Latif, S.A., Brem, A.S., Interactions of mineralocorgroups ticoids and glucocorticoids in epithelial target tissues revisited (2009) Steroids, 74, pp. 1-6 
504 |a Vantyghem, M.C., Marcelli-Tourvieille, S., Defrance, F., Wemeau, J.L., 11beta-hydroxysteroid dehydrogenases. Recent advances] (2007) Ann Endocrinol, 68, pp. 349-356 
504 |a Bonvalet, J.P., Doignon, I., Blot-Chabaud, M., Pradelles, P., Farman, N., Distribution of 11 beta-hydroxysteroid dehydrogenase along the rabbit nephron (1990) J Clin Invest, 86, pp. 832-837 
504 |a Whorwood, C.B., Barber, P.C., Gregory, J., Sheppard, M.C., Stewart, P.M., 11 beta-hydroxysteroid dehydrogenase and corticosteroid hormone receptors in the rat colon (1993) Am J Physiol, 264, pp. E951-E957 
504 |a Heiniger, C.D., Kostadinova, R.M., Rochat, M.K., Serra, A., Ferrari, P., Dick, B., Hypoxia causes down-regulation of 11 beta-hydroxysteroid dehydrogenase type 2 by induction of Egr-1 (2003) FASEB J, 17, pp. 917-919 
504 |a Quinkler, M., Zehnder, D., Lepenies, J., Petrelli, M.D., Moore, J.S., Hughes, S.V., Expression of renal 11beta-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function (2005) Eur J Endocrinol, 153, pp. 291-299 
504 |a Bistrup, C., Thiesson, H.C., Jensen, B.L., Skott, O., Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 is not responsible for sodium retention in nephrotic rats (2005) Acta Physiol Scand, 184, pp. 161-169 
504 |a Morrison, A.B., Experimentally induced chronic renal insufficiency in the rat (1962) Lab Invest, 11, pp. 321-332 
504 |a Ortiz, R.M., Graciano, M.L., Mullins, J.J., Mitchell, K.D., Aldosterone receptor antagonism alleviates proteinuria, but not malignant hypertension, in Cyp1a1-Ren2 transgenic rats (2007) Am J Physiol Renal Physiol, 293, pp. F1584-F1591 
504 |a Juknevicius, I., Segal, Y., Kren, S., Lee, R., Hostetter, T.H., Effect of aldosterone on renal transforming growth factor-beta (2004) Am J Physiol Renal Physiol, 286, pp. F1059-F1062 
504 |a Virdis, A., Neves, M.F., Amiri, F., Viel, E., Touyz, R.M., Schiffrin, E.L., Spironolactone improves angiotensin-induced vascular changes and oxidative stress (2002) Hypertension, 40, pp. 504-510 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Igarreta, P., Calvo, J.C., Damasco, M.C., Activity of renal 11beta-hydroxysteroid dehydrogenase 2 (11betaHSD2) in stressed animals (1999) Life Sci, 64, pp. 2285-2290 
504 |a Leenen, F.H., de Jong, W., A solid silver clip for induction of predictable levels of renal hypertension in the rat (1971) J Appl Physiol, 31, pp. 142-144 
504 |a Slot, C., Plasma creatinine determination. A new and specific Jaffe reaction method (1965) Scand J Clin Lab Invest, 17, pp. 381-387 
504 |a Van Liew, J.B., Zamlauski-Tucker, M.J., Feld, L.G., Endogenous creatinine clearance in the rat: Strain variation (1993) Life Sci, 53, pp. 1015-1021 
504 |a Bricker, N.S., On the meaning of the intact nephron hypothesis (1969) Am J Med, 46, pp. 1-11 
504 |a Meyer, T.W., Scholey, J.W., Brenner, B.M., Nephron adaptation to renal injury (1991) The kidney, pp. 1872-1890. , Brenner BM, Rector FC Editors, 4th edn. Philadelphia: W.B. Saunders; 
504 |a Allison, M.E., Wilson, C.B., Gottschalk, C.W., Pathophysiology of experimental glomerulonephritis in rats (1974) J Clin Invest, 53, pp. 1402-1423 
504 |a Kramp, R.A., MacDowell, M., Gottschalk, C.W., Oliver, J.R., A study by microdissection and micropuncture of the structure and the function of the kidneys and the nephrons of rats with chronic renal damage (1974) Kidney Int, 5, pp. 147-176 
504 |a Levy, Y.N., Fellet, A., Arranz, C., Balaszczuk, A.M., Adrogue, H.J., Amiloride-sensitive and amiloride-insensitive kaliuresis in advanced chronic kidney disease (2008) J Nephrol, 21, pp. 93-98 
504 |a Frassetto, L., Morris Jr, R.C., Sellmeyer, D.E., Todd, K., Sebastian, A., Diet, evolution and aging - the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet (2001) Eur J Nutr, 40, pp. 200-213 
504 |a Malnic, G., Klose, R.M., Giebisch, G., Micropuncture study of renal potassium excretion in the rat (1964) Am J Physiol, 206, pp. 674-686 
504 |a Audige, A., Dick, B., Frey, B.M., Frey, F.J., Corman, B., Vogt, B., Glucocorticoids and 11 beta-hydroxysteroid dehydrogenase type 2 gene expression in the aging kidney (2002) Eur J Clin Invest, 32, pp. 411-420 
504 |a Dunnill, M.S., Halley, W., Some observations on the quantitative anatomy of the kidney (1973) J Pathol, 110, pp. 113-121 
504 |a McLachlan, M.S., Guthrie, J.C., Anderson, C.K., Fulker, M.J., Vascular and glomerular changes in the ageing kidney (1977) J Pathol, 121, pp. 65-78 
520 3 |a Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg·kg -1·day-1 for 7 days) and 11β-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg) and Pcr (Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 ± 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before) vs 0.89 ± 0.09 ?Eq/min (after) and CRF = 1.05 ± 0.05 (before) vs 0.37 ± 0.07 μEq/min (after); P < 0.05). 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05), although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This adaptation may be mediated by renal 11β-HSD2 activity, which, when normalized for GFR, became similar to that of control rats, suggesting that mineralocorticoid receptors maintain their aldosterone selectivity.  |l eng 
593 |a Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, calle Paraguay, 2155, 6th, 1421 Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a 11Β-HSD2 
690 1 0 |a 5/6 NEPHRECTOMY 
690 1 0 |a ALDOSTERONE 
690 1 0 |a POTASSIUM EXCRETION 
690 1 0 |a 11BETA HYDROXYSTEROID DEHYDROGENASE 2 
690 1 0 |a ALDOSTERONE 
690 1 0 |a CREATININE 
690 1 0 |a POTASSIUM 
690 1 0 |a SODIUM 
690 1 0 |a SPIRONOLACTONE 
690 1 0 |a 11BETA HYDROXYSTEROID DEHYDROGENASE 2 
690 1 0 |a ALDOSTERONE 
690 1 0 |a POTASSIUM 
690 1 0 |a ALDOSTERONE BLOOD LEVEL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ARTICLE 
690 1 0 |a CHRONIC KIDNEY FAILURE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CREATININE BLOOD LEVEL 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYME INACTIVATION 
690 1 0 |a GLOMERULUS FILTRATION RATE 
690 1 0 |a HORMONE ACTION 
690 1 0 |a KIDNEY MICROSOME 
690 1 0 |a MALE 
690 1 0 |a NEPHRECTOMY 
690 1 0 |a NONHUMAN 
690 1 0 |a POTASSIUM BALANCE 
690 1 0 |a POTASSIUM EXCRETION 
690 1 0 |a POTASSIUM URINE LEVEL 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a RAT 
690 1 0 |a RECEPTOR AFFINITY 
690 1 0 |a SHAM PROCEDURE 
690 1 0 |a SODIUM EXCRETION 
690 1 0 |a SODIUM URINE LEVEL 
690 1 0 |a SYSTOLIC BLOOD PRESSURE 
690 1 0 |a ANIMAL 
690 1 0 |a BLOOD 
690 1 0 |a BLOOD PRESSURE 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a METABOLISM 
690 1 0 |a MICROSOME 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a WISTAR RAT 
690 1 0 |a RATTUS 
690 1 0 |a RATTUS NORVEGICUS 
690 1 0 |a 11-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 2 
690 1 0 |a ALDOSTERONE 
690 1 0 |a ANIMALS 
690 1 0 |a BLOOD PRESSURE 
690 1 0 |a KIDNEY FAILURE, CHRONIC 
690 1 0 |a MALE 
690 1 0 |a MICROSOMES 
690 1 0 |a NEPHRECTOMY 
690 1 0 |a POTASSIUM 
690 1 0 |a RATS 
690 1 0 |a RATS, WISTAR 
650 1 7 |2 spines  |a HOMEOSTASIS 
650 1 7 |2 spines  |a HOMEOSTASIS 
700 1 |a Altuna, M.E. 
700 1 |a Damasco, M.C. 
700 1 |a Mac Laughlin, M.A. 
773 0 |d 2010  |g v. 43  |h pp. 52-56  |k n. 1  |p Braz. J. Med. Biol. Res.  |x 0100879X  |w (AR-BaUEN)CENRE-8827  |t Brazilian Journal of Medical and Biological Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-75649147844&partnerID=40&md5=5d85984a65af2ce87ca4dea5100ab113  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0100879X_v43_n1_p52_Yeyati  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0100879X_v43_n1_p52_Yeyati  |y Registro en la Biblioteca Digital 
961 |a paper_0100879X_v43_n1_p52_Yeyati  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69153