Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection

We report a comprehensive primary metabolite profiling of sunflower (Helianthus annuus) genotypes displaying contrasting behavior to Sclerotinia sclerotiorum infection. Applying a GC-MS-based metabolite profiling approach, we were able to identify differential patterns involving a total of 63 metabo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Peluffo, L.
Otros Autores: Lia, V., Troglia, C., Maringolo, C., Norma, P., Escande, A., Esteban Hopp, H., Lytovchenko, A., Fernie, A.R, Heinz, R., Carrari, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25834caa a22017177a 4500
001 PAPER-8199
003 AR-BaUEN
005 20230518203801.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-71849099319 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PYTCA 
100 1 |a Peluffo, L. 
245 1 0 |a Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection 
260 |b Elsevier Ltd  |c 2010 
270 1 0 |m Heinz, R.; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (IB-INTA)Argentina; email: rheinz@cnia.inta.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Abood, J.K., Lösel, D.M., Changes in carbohydrate composition of cucumber leaves during the development of powdery mildew infection (2003) Plant Pathol., 52, pp. 256-265 
504 |a Aebi, H., Catalase in vitro (1984) Meth. Enzymol., 105, pp. 121-125 
504 |a Al-Chaarani, G.R., Roustaee, A., Gentzbittel, L., Mokrani, L., Barrault, G., Dechamp-Guillaume, G., Sarrafi, A., A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs) (2002) Theor. Appl. Genet., 104, pp. 490-496 
504 |a Al-Chaarani, G.R., Gentzbittel, L., Huang, X.Q., Sarrafi, A., Genotypic variation and identification of QTLs of agronomic traits, using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.) (2004) Theor. Appl. Genet., 109, pp. 1353-1360 
504 |a Baxter, C.J., Redestig, H., Schauer, N., Repsilber, D., Patil, K.R., Nielsen, J., Selbig, J., Sweetlove, L.J., The metabolic response of heterotrophic Arabidopsis cells to oxidative stress (2007) Plant Physiol., 143, pp. 312-325 
504 |a Bednarek, P., Schneider, B., Svatos, A., Oldham, L.J., Hahlbrock, K., Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots (2005) Plant Physiol., 38, pp. 1058-1070 
504 |a Berger, S., Sinha, A.K., Roitsch, T., Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions (2007) J. Ex. Bot., 58, pp. 4019-4026 
504 |a Bert, P.F., Jouan, I., De Labrouhe, D.T., Serre, F., Nicolas, P., Vear, F., Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi (2002) Theor. Appl. Genet., 105, pp. 985-993 
504 |a Bert, P.F., Dechamp-Guillaume, G., Serre, F., Jouan, I., Tourvieille de Labrouhe, D., Nicolas, P., Vear, F., Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 3. Characterisation of QTL involved in resistance to Sclerotinia sclerotiorum and Phoma macdonaldi (2004) Theor. Appl. Genet., 109, pp. 865-874 
504 |a Boland, G.J., Hall, R., Index of plant hosts of Sclerotinia sclerotiorum (1994) Can. J. Plant Pathol., 16, pp. 93-108 
504 |a Campbell, C.L., Madden, L.V., (1990) Introduction to Plant Disease Epidemiology, , John Willey and Sons, New York 
504 |a Carter, C., Thornburg, R.W., Tobacco nectarin I - purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues (2000) J. Biol. Chem., 275, pp. 36726-36733 
504 |a Cessna, S.G., Sears, V.E., Dickman, M.B., Low, P.S., Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant (2000) Plant Cell, 12, pp. 2191-2200 
504 |a Chandra-Shekara, A.C., Venugopal, S.C., Barman, S.R., Kachroo, A., Kachroo, P., Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7277-7282 
504 |a Chou, H.-M., Bundock, N., Rolfe, S.A., Scholes, J.D., Infection of Arabidopsis thaliana leaves with Albugo Candida (white blister rust) causes a reprogramming of host metabolism (2000) Mol. Plant Pathol., 1, pp. 99-113 
504 |a Christensen, A.B., Thordal-Christensen, H., Zimmermann, G., Gjetting, T., Lyngkjaer, M.F., Dudler, R., Schweizer, P., The germin-like protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley (2004) MPMI, 17, pp. 109-117 
504 |a Chung, H.S., Koo, A.J.K., Gao, X., Jayanty, S., Thines, B., Jones, A.D., Howe, G.A., Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory (2008) Plant Physiol., 146, pp. 952-964 
504 |a Depuydt, S., Trenkamp, S., Fernie, A.R., Elftieh, S., Renou, J.-P., Vuylsteke, M., Holsters, M., Vereecke, D., An integrated genomics approach to define niche establishment by Rhodococcus fascians (2009) Plant Physiol., 149, pp. 1366-1386 
504 |a Desbrosses, G., Kopka, J., Udvardi, M.K., Lotus japonicus metabolic profiling development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions (2005) Plant Physiol., 137, pp. 1302-1318 
504 |a Divon, H.H., Ziv, C., Davydov, O., Yarden, O., Fluhr, R., The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis (2006) Mol. Plant Pathol., 7, pp. 485-497 
504 |a Dumas, B., Sailland, A., Cheviet, J.P., Freyssinet, G., Pallett, K., Identification of barley oxalate oxidase as a germin-like protein (1993) Comptes Rendus de l'Academie des Sciences Serie III-Sciences de la Vie, 316, pp. 793-798 
504 |a Dutton, M.V., Evans, C.S., Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment (1996) Can. J. Microbiol., 42, pp. 881-895 
504 |a Escande, A.R., Laich, F.S., Pedraza, M.V., Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum) (2002) Plant Pathol., 51, pp. 346-351 
504 |a Fernie, A.R., The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding (2007) Phytochemistry, 68, pp. 2861-2880 
504 |a Fernie, A.R., Trethewey, R.N., Krotzky, A.J., Willmitzer, L., Metabolite profiling: from diagnostics to systems biology (2004) Nat. Rev. Mol. Cell Biol., 5, pp. 1-7 
504 |a Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N., Willmitzer, L., Metabolite profiling for plant functional genomics (2000) Nat. Biotechnol., 18, pp. 1157-1161 
504 |a Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L., Williams, L.E., The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum (2003) Plant Physiol., 132, pp. 821-829 
504 |a Gentzbittel, L., Mouzeyar, S., Badaoui, S., Mestries, E., Vear, F., Tourvieille De Labrouhe, D., Nicolas, P., Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L (1998) Theor. Appl. Genet., 96, pp. 519-525 
504 |a Godfrey, D., Able, A.J., Dry, I.B., Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? (2007) MPMI, 20 (9), pp. 1112-1125 
504 |a Godoy, G., Steadman, J.R., Dickman, M.B., Dam, R., Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris (1990) Physiol. Mol. Plant Pathol., 37, pp. 179-191 
504 |a Guimerà, R., Nunes Amaral, L.A., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900 
504 |a Hall, J.L., Williams, L.E., Assimilate transport and partitioning in fungal biotrophic interactions (2000) Aust. J. Plant Pathol., 27, pp. 549-559 
504 |a Hu, X., Bidney, D.L., Yalpani, N., Duvick, J.P., Crasta, O., Folkerts, O., Lu, G., Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower (2003) Plant Physiol., 133, pp. 170-181 
504 |a Jobic, C., Boisson, A.M., Gout, E., Rascle, C., Fevre, M., Cotton, P., Bligny, R., Metabolic processes and carbon nutrient exchanges between host and pathogen sustain the disease development during sunflower infection by Sclerotinia sclerotiorum (2007) Planta, 226, pp. 251-265 
504 |a Jubault, M., Hamon, C., Gravot, A., Lariagon, C., Delourme, R., Bouchereau, A., Manzanares-Dauleux, M.J., Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes (2008) Plant Physiol., 146, pp. 2008-2019 
504 |a Kachroo, A., Daqi, F., Havens, W., Navarre, D., Kachroo, P., Ghabrial, S., An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean (2008) Mol. Plant Microbe Interact., 21, pp. 564-575 
504 |a Kachroo, A., Venugopal, S.C., Lapchyk, L., Falcone, D., Hildebrand, D., Kachroo, P., Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 5152-5157 
504 |a Kiani, S.P., Talia, P., Maury, P., Grieu, P., Heinz, R., Perrault, A., Nishinakamasu, V., Sarrafi, A., Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments (2007) Plant Sci., 172, pp. 773-787 
504 |a Kim, K.S., Min, J.Y., Dickman, M., Oxalic acid an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development (2008) Mol. Plant Microbe Interact., 21, pp. 605-612 
504 |a Kocal, N., Sonnewald, U., Sonnewald, S., Cell wall bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestros pv vesicatoria (2008) Plant Physiol., 148, pp. 1523-1536 
504 |a Korkina, L.G., Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health (2007) Cell Mol. Biol., 53, pp. 15-25 
504 |a Lindon, J.C., Holmes, E., Bollard, M.E., Stanley, E.G., Nicholson, J.K., Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis (2004) Biomarkers, 9, pp. 1-31 
504 |a Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Scheel, D., Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis (2005) Science, 310, pp. 1180-1183 
504 |a Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., Fernie, A.R., Gas chromatography mass spectrometry-based metabolite profiling in plants (2006) Nat. Protoc., 1, pp. 387-396 
504 |a Lytovchenko, A., Bieberich, K., Willmitzer, L., Fernie, A.R., Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase (2002) Planta, 215, pp. 802-811 
504 |a Maringolo, C., QTL Mapping to Resistance to Sclerotinia Head Rot of Sunflower (Sclerotinia sclerotiorum (Lib.) De Bary) (2007) Magister Scientiae, , Thesis. Facultad de Ciencias Agrarias. Universidad Nacional de Mar del Plata. INTA. Experimental Research Station Balcarce, Argentina 
504 |a Mestries, E., Gentzbittel, L., Tourvieille De Labrouhe, D., Nicolas, P., Vear, F., Analyses of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers (1998) Mol. Breed., 4, pp. 215-226 
504 |a Meyer, R.C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Törjék, O., Fiehn, O., Altmann, T., The metabolic signature related to high plant growth rate in Arabidopsis thaliana (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 4759-4764 
504 |a Micic, Z., Hahn, V., Bauer, E., Melchinger, A.E., Knapp, S.J., Tang, S., Schon, C.C., Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping (2005) Theor. Appl. Genet., 111, pp. 233-242 
504 |a Micic, Z., Hahn, V., Bauer, E., Schon, C.C., Knapp, S.J., Tang, S., Melchinger, A.E., QTL mapping of midstalk Sclerotinia - rot resistance in sunflower (2004) Theor. Appl. Genet., 109, pp. 1474-1484 
504 |a Micic, Z., Hahn, V., Bauer, E., Schon, C.C., Melchinger, A.E., QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOSsel × CM625 (2005) Theor. Appl. Genet., 110, pp. 1490-1498 
504 |a Mikkelsen, M.D., Halkier, B.A., Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from cassava (2003) Plant Physiol., 131, pp. 773-779 
504 |a Paniego, N., Heinz, R., Hopp, H.E., Sunflower (2006) Genome Mapping and Molecular Breeding Vol. II (Oilseeds), pp. 153-178. , Kole C. (Ed), Springer, Berlin, Heidelberg, Germany 
504 |a Pedras, M.S., Zheng, Q.A., Gadagi, R.S., Rimmer, S.R., Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress (2008) Phytochemistry, 69, pp. 894-910 
504 |a Pedraza, M.V., (2005) Estudios tendientes al manejo integrado de la podredumbre húmeda del capítulo del girasol (Sclerotinia sclerotiorum), , PhD Thesis. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias Balcarce, 102p 
504 |a Pereyra, V.R., Escande, A.R., (1994) Enfermedades del Girasol en la Argentina, Manual de Reconocimiento, , Instituto Nacional de Tecnologia Agropecuaria Sociedad Impresora Americana, Buenos Aires, Argentina 
504 |a Prats, E., Bazzalo, M.E., León, A., Jorrín, J.V., Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum (2003) Euphytica, 132, pp. 321-329 
504 |a Prats, E., Bazzalo, M.E., León, A., Jorrin, J.V., Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot (2006) Euphytica, 147, pp. 451-460 
504 |a Prats, E., Galindo, J.C., Bazzalo, M.E., Leon, A., Macias, F.A., Rubiales, D., Jorrin, J.V., Antifungal activity of a new phenolic compound from capitulum of a head rot-resistant sunflower genotype (2007) J. Chem. Ecol., 33, pp. 2245-2253 
504 |a Price, J., Li, T.C., Kang, S.G., Na, J.K., Jang, J.C., Mechanisms of glucose signaling during germination of Arabidopsis (2003) Plant Physiol., 132, pp. 1424-1438 
504 |a Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., Siedow, J.N., Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling (2006) Plant Physiol., 141, pp. 357-366 
504 |a Rice, W., Analysing tables of statistical tests (1989) Evolution, 43, pp. 223-225 
504 |a Rodríguez, M.A., Venedikian, N., Bazzalo, M.E., Godeas, A., Histopathology of Sclerotinia sclerotiorum attack on flower parts of Helianthus annuus heads in tolerant and susceptible varieties (2004) Mycopathologia, 157, pp. 291-302 
504 |a Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., Willmitzer, L., Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry (2000) Plant J., 23, pp. 131-142 
504 |a Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., Fernie, A.R., Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems (2001) Plant Cell, 13, pp. 11-29 
504 |a Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development (2003) Plant Physiol., 133, pp. 84-99 
504 |a Roitsch, T., Balibrea, M.E., Hofmann, M., Proels, R., Sinha, A.K., Extracellular invertase: key metabolic enzyme and PR protein (2003) J. Exp. Bot., 382, pp. 513-524 
504 |a Rönicke, S., Hahn, V., Vogler, A., Friedt, W., Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum in sunflower (2005) Phytopathology, 95, pp. 834-839 
504 |a Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Fernie, A.R., Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement (2006) Nat. Biotechnol., 24, pp. 447-454 
504 |a Scheideler, M., Schlaich, N.L., Fellenberg, K., Beissbarth, T., Hauser, N.C., Vingron, M., Slusarenko, A.J., Hoheisel, J.D., Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays (2002) J. Biol. Chem., 277, pp. 10555-10561 
504 |a Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G., Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana tabacum L (1997) Plant Physiol., 115, pp. 1211-1219 
504 |a Schneiter, A.A., Miller, J.F., Description of sunflower growth stages (1981) Crop Sci., 21, pp. 901-903 
504 |a Scholes, J.D., Lee, P.J., Horton, P., Lewis, D.H., Invertase: understanding changes in the photosynthetic and carbohydrate metabolism of barley leaves infected with powdery mildew (1994) New Phytol., 126, pp. 213-222 
504 |a Senkoylu, N., Dale, N., Nutritional evaluation of a high-oil sunflower meal in broiler starter diets (2006) J. Appl. Poult. Res., 15, pp. 40-47 
504 |a Sumner, L.W., Mendes, P., Dixon, R.A., Plant metabolomics: large-scale phytochemistry in the functional genomics era (2003) Phytochemistry, 62, pp. 817-836 
504 |a Swarbrick, P.J., Schulze-Lefert, P., Scholes, J.D., Metabolic consequences of susceptibility and resistance in barley leaves challenged with powdery mildew (2006) Plant Cell Environ., 29, pp. 1061-1076 
504 |a Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., Martin, G.B., Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase (1996) Science, 274, pp. 260-263 
504 |a Tang, S., Yu, J.K., Slabaugh, M.B., Shintani, D.K., Knapp, S.J., Simple sequence repeat map of the sunflower genome (2002) Theor. Appl. Genet., 105, pp. 1124-1136 
504 |a Tavernier, V., Cadiou, S., Pageau, K., Laugé, R., Reisdorf-Cren, M., Langin, T., Masclaux-Daubresse, C., The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity (2007) J. Exp. Bot., 58, pp. 3351-3360 
504 |a Tohge, T., Fernie, A.R., Web-based resources for mass-spectrometry-based metabolomics: a users guide (2009) Phytochemistry, 70, pp. 450-456 
504 |a Vilo, J., Kapushesky, M., Kemmeren, P., Sarkans, U., Brazma, A., Expression profiler (2003) The Analysis of Gene Expression Data: Methods and Software, , Parmigiani G., Garrett E., Irizarry R., and Zeger S. (Eds), Springer Verlag, New York, NY (p. 5) 
504 |a Voegele, R.T., Wirsel, S., Möll, U., Lechner, M., Mendgen, K., Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection (2006) Mol. Plant Microbe Interact., 19, pp. 625-634 
504 |a Wagner, C., Sefkow, M., Kopka, J., Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles (2003) Phytochemistry, 62, pp. 887-900 
504 |a Zhao, J., Wang, J., An, L., Doergue, R.W., Chen, Z.J., Grau, C.R., Meng, J., Osborn, T.C., Analysis of gene expression profiles in response to Sclerotinia (2007) Planta, 227, pp. 13-24 
504 |a Zhu, L., Liu, X., Liu, X., Jeannotte, R., Reese, J., Harris, M., Stuart, J., Chen, M., Hessian fly (Mayetiola destructor) attack causes dramatic shift in carbon/nitrogen metabolism in wheat (2007) Mol. Plant Microbe Interact., 21, pp. 70-78 
504 |a Zrenner, R., Salanoubat, M., Willmitzer, L., Sonnewald, U., Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.) (1995) Plant J., 7, pp. 97-107 
504 |a Zucker, M., Sequential induction of phenylalanine ammonia-lyase and a lyase-inactivating system in potato tuber disks (1968) Plant Physiol., 43, pp. 365-374 
504 |a Zulak, K.G., Cornish, A., Daskalchuk, T.E., Deyholos, M.K., Goodenowe, D.B., Gordon, P.M., Klassen, D., Facchini, P.J., Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism (2007) Planta, 225, pp. 1085-1106 
520 3 |a We report a comprehensive primary metabolite profiling of sunflower (Helianthus annuus) genotypes displaying contrasting behavior to Sclerotinia sclerotiorum infection. Applying a GC-MS-based metabolite profiling approach, we were able to identify differential patterns involving a total of 63 metabolites including major and minor sugars and sugar alcohols, organic acids, amino acids, fatty acids and few soluble secondary metabolites in the sunflower capitulum, the main target organ of pathogen attack. Metabolic changes and disease incidence of the two contrasting genotypes were determined throughout the main infection period (R5.2-R6). Both point-by-point and non-parametric statistical analyses showed metabolic differences between genotypes as well as interaction effects between genotype and time after inoculation. Network correlation analyses suggested that these metabolic changes were synchronized in a time-dependent manner in response to the pathogen. Concerted differential metabolic changes were detected to a higher extent in the susceptible, rather than the resistant genotype, thereby allowing differentiation of modules composed by intermediates of the same pathway which are highly interconnected in the susceptible line but not in the resistant one. Evaluation of these data also demonstrated a genotype specific regulation of distinct metabolic pathways, suggesting the importance of detection of metabolic patterns rather than specific metabolite changes when looking for metabolic markers differentially responding to pathogen infection. In summary, the GC-MS strategy developed in this study was suitable for detection of differences in carbon primary metabolism in sunflower capitulum, a tissue which is the main entry point for this and other pathogens which cause great detrimental impact on crop yield. © 2009 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: California Department of Fish and Game 
536 |a Detalles de la financiación: Instituto Nacional de Tecnología Agropecuaria 
536 |a Detalles de la financiación: Royal Adelaide Hospital 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported with grants from the Max Planck Society (Germany) to ARF and FC, DFG (Germany) to AL, INTA (Argentina) to RAH, ANPCyT (Argentina) to RAH and CONICET (Argentina) to RAH and FC. LP holds a CONICET PhD fellowship. FC, VL, NP and RAH are members of CONICET. HEH, AE, NP and RAH are independent researchers at INTA. We thank Christian Kristukat for help with the Python IDLE software. Appendix A 
593 |a Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Unidad integrada INTA Balcarce-Universidad Nacional de Mar del Plata, Argentina 
593 |a Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Postdam, Golm, Germany 
690 1 0 |a COMPOSITAE 
690 1 0 |a HEAD ROT DISEASE 
690 1 0 |a HELIANTHUS ANNUUS L. 
690 1 0 |a METABOLITE PROFILING 
690 1 0 |a SINK ORGAN METABOLISM 
690 1 0 |a SUNFLOWER 
690 1 0 |a ASTERACEAE 
690 1 0 |a HELIANTHUS 
690 1 0 |a HELIANTHUS ANNUUS 
690 1 0 |a SCLEROTINIA SCLEROTIORUM 
700 1 |a Lia, V. 
700 1 |a Troglia, C. 
700 1 |a Maringolo, C. 
700 1 |a Norma, P. 
700 1 |a Escande, A. 
700 1 |a Esteban Hopp, H. 
700 1 |a Lytovchenko, A. 
700 1 |a Fernie, A.R. 
700 1 |a Heinz, R. 
700 1 |a Carrari, F. 
773 0 |d Elsevier Ltd, 2010  |g v. 71  |h pp. 70-80  |k n. 1  |p Phytochemistry  |x 00319422  |w (AR-BaUEN)CENRE-88  |t Phytochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-71849099319&doi=10.1016%2fj.phytochem.2009.09.018&partnerID=40&md5=4b9221ae57a257e682150b1972535b50  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.phytochem.2009.09.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00319422_v71_n1_p70_Peluffo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319422_v71_n1_p70_Peluffo  |y Registro en la Biblioteca Digital 
961 |a paper_00319422_v71_n1_p70_Peluffo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69152