A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II

In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197-220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lederman, C.
Otros Autores: Wolanski, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05083caa a22004577a 4500
001 PAPER-8194
003 AR-BaUEN
005 20230518203800.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70449529891 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lederman, C. 
245 1 2 |a A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II 
260 |c 2010 
270 1 0 |m Lederman, C.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: clederma@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Berestycki, H., Caffarelli, L.A., Nirenberg, L., Uniform estimates for regularization of free boundary problems (1990) Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, 122, pp. 567-619. , In: Sadosky, C. (ed.), Marcel Dekker, New York 
504 |a Buckmaster, J.D., Ludford, G.S.S., (1982) Theory of Laminar Flames, , Cambridge: Cambridge University Press 
504 |a Caffarelli, L.A., A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz (1989) Comm. Pure Appl. Math., 42, pp. 55-78 
504 |a Caffarelli, L.A., Lederman, C., Wolanski, N., Uniform estimates and limits for a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (2), pp. 453-490 
504 |a Evans, L., Gariepy, R., (1992) Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, , Boca Raton: CRC Press 
504 |a Lederman, C., Wolanski, N., Singular perturbation in a nonlocal diffusion model (2006) Commun. PDE, 31 (2), pp. 195-241 
504 |a Lederman, C., Wolanski, N., A local monotonicity formula for an inhomogeneous singular perturbation problem and applications (2008) Ann. Math. Pura Appl., 187 (2), pp. 197-220 
504 |a Lederman, C., Wolanski, N., A two phase elliptic singular perturbation problem with a forcing term (2006) J. Math. Pures Appl., 86, pp. 552-589 
504 |a Vazquez, J.L., The free boundary problem for the heat equation with fixed gradient condition (1996) Free Boundary Problems, Theory and Applications (Zakopane, 1995), Pitman Res. Notes Math. Ser., 363, pp. 277-302. , In: Niezgódka, M., Strzelecki, P. (eds.), Longman, Harlow 
504 |a Weiss, G.S., A singular limit arising in combustion theory: Fine properties of the free boundary (2003) Calc. Var. Partial Differ. Equ., 17 (3), pp. 311-340 
520 3 |a In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197-220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions u<sup/> to the singular perturbation problem and for u = lim u<sup/>, assuming that both and u<sup/> and u were defined in an arbitrary domain D in ℝN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while u<sup/> are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u &gt; 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2009.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
650 1 7 |2 spines  |a COMBUSTION 
690 1 0 |a INHOMOGENEOUS PROBLEMS 
690 1 0 |a MONOTONICITY FORMULA 
690 1 0 |a SINGULAR PERTURBATION PROBLEMS 
700 1 |a Wolanski, N. 
773 0 |d 2010  |g v. 189  |h pp. 25-46  |k n. 1  |p Ann. Mat. Pura Appl.  |x 03733114  |w (AR-BaUEN)CENRE-1530  |t Annali di Matematica Pura ed Applicata 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70449529891&doi=10.1007%2fs10231-009-0099-4&partnerID=40&md5=b29a547732563b63e81ab911a5ae88eb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10231-009-0099-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03733114_v189_n1_p25_Lederman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03733114_v189_n1_p25_Lederman  |y Registro en la Biblioteca Digital 
961 |a paper_03733114_v189_n1_p25_Lederman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69147