Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito

We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Otero, M.
Otros Autores: Solari, H.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations. © 2009 Elsevier Inc. All rights reserved.
Bibliografía:Hunt, M., Microbiology and Immunology, , http://www.med.sc.edu:85/mhunt/arbo.htm, On-line, University of South Carolina, School of Medicine, South Carolina, United States, 2007, Available from
Dengue hemorrhagic fever (1998) Diagnosis Treatment Prevention and Control, , WHO, second ed, World Health Organization, Ginebra, Suiza
N. Schweigmann, R. Boffi, Aedes aegypti y aedes albopictus: Situación entomológica en la región, in: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, Buenos Aires, 1998, p. 259; de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., Atmospheric control of Aedes aegypti populations in buenos aires (argentina) and its variability (2000) International Journal of Biometerology, 44, p. 148
Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., Dengue transmission risk maps of argentina (2001) Tropical Medicine and International Health, 6 (3), p. 170
Seijo, A., Situación del dengue en la argentina (2007) Boletín de la Asociación Argentina de Microbiología, 175, p. 1
Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ulv) insecticide applications on dengue epidemics (1992) American Journal of Tropical Medicinal Hygiene, 47, p. 709
Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Mathematical Biosciences, 150, p. 131
Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) Journal of Mathematical Biology, 38, p. 220
Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Mathematical Biosciences, 167, p. 51
Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms (2002) Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, p. 387
Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Mathematical and Computer Modelling, 37, p. 949
Derouich, M., Boutayeb, A., Twizell, E.H., A model of dengue fever (2003) Biomedical Engineering Online, 2, p. 4
Tran, A., Raffy, M., On the dynamics of dengue epidemics from large-scale information (2006) Theoretical Population Biology, 69, p. 3
Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results (1995) American Journal of Tropical Medicinal Hygiene, 53, p. 489
L.B.L. Santos, M.C. Costa, S.T.R. Pinho, R.F.S. Andrade, F.R. Barreto, M.G. Teixeira, M.L. Barreto, Periodic forcing in a three level cellular automata model for a vector transmitted disease, arXiv:0810.0384v1, 2008; Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: formulation and application to a city with temperate climate (2006) Bulletin of the Mathematical Biology, 68, p. 1945
Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bulletin of Mathematical Biology, 70, p. 1297
Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of Aedes aegypti in wat samphaya Bangkok Thailand (1972) Bulletin of the World Health Organisation, 46, p. 211
Christophers, R., (1960) Aedes aegypti (L.), the yellow fever mosquito, , Cambridge University Press, Cambridge
Carbajo, A.E., Curto, S.I., Schweigmann, N., Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in buenos aires: southern fringe bionomics of an introduced vector (2006) Medical and Veterinary Entomology, 20, p. 209
Wolfinsohn, M., Galun, R., A method for determining the flight range of Aedes aegypti (linn.) (1953) Bullentin of the Research Council of Israel, 2, p. 433
Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs (1995) American Journal of Tropical Medicinal Hygiene, 52, p. 177
Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites (1998) Journal of Medicinal Entomology, 35 (4), p. 578
Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York
Andersson, H., Britton, T., (2000) Lecture Notes in Statistics, 151. , Springer-Verlag, Berlin
Solari, H.G., Natiello, M.A., Stochastic population dynamics: the poisson approximation (2003) Physical Review E, 67, p. 031918
Aparicio, J.P., Solari, H.G., Population dynamics: a Poissonian approximation and its relation to the langevin process (2001) Physical Review Letters, 86, p. 4183
Carbajo, A.E., Gomez, S.M., Curto, S.I., Schweigmann, N., Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de buenos aires (2004) Medicina, 64, p. 231
Focks, D.A., Brenner, R.J., Hayes, J., Daniels, E., Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts (2000) American Journal of Tropical Medicinal Hygiene, 62 (1), p. 11
Bartlett, M.S., The relevance of stochastic models for large-scale epidemiological phenomena (1964) Applied Statistics, 13 (1), p. 2
Lloyd, A.L., Zhang, J., Root, A.M., Stochasticity and heterogeneity in host vector models (2007) Interface, 4, p. 851
WHO, Yellow Fever, World Health Organization, Ginebra, Suiza, 2001, fact sheet 100; Simmons, J.S., Dengue fever (1933) The American Journal of Tropical Medicine XI, p. 77
Massad, E., Coutnho, F.A.B., Burattini, M.N., Lopez, L.F.F., The risk of yellow fever in a dengue-infested area (2001) Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, p. 370
Dégallier, P.N., Hervé, J.P., Rosa, A.F.A.T.D., Sa, G.C., Aedes aegypti (l.): Importance de sa bioécologie dans la transmission de la dengue et des autres arbobirus (1988) Bulletin des Societes Pathologie Exotique, 81, p. 97
Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clinical Microbiology Review, 11, p. 480
Vainio, J., Cutts, F., Yellow fever (1998), Tech. Rep, World Health Organization, Geneva; van der Most, R.G., Murali-JKrishna, K., Ahmed, R., Strauss, J.H., Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific cd8 t-cell response (2000) Journal of Virology, 74, p. 8094
Chowella, G., Diaz-Dueñas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Mathematical Biosciences, 208, p. 571
Nishiura, H., Halstead, S.B., Natural history of dengue virus (denv)-1 and denv-4 infections: Reanalysis pf classic studies (2007) Journal of Infectious Diseases, 195, p. 1007
Actualización casos de dengue en argentina, 10 de mayo de 2009, Tech. rep., Ministerio de Salud Pública de Argentina, Buenos Aires, 2009, Available from <http://www.msal.gov.ar/htm/Site/sala_situacion/index.asp>; Campaña de erradicacion del Aedes aegypti en la república argentina. informe final, Tech. Rep., Ministerio de Asistencia Social y Salud Publica, Argentina, Buenos Aires, 1964; Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., Scavuzzo, C., Space-time analysis of the dengue spreading dynamics in the 2004 tartagal outbreak northern argentina (2007) Acta Tropica, 103, p. 1
Király, A., Jánosi, I.M., Stochastic modelling of daily temperature fluctuations (2002) Physical Review E, 65, p. 051102
Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) Journal of Theoretical Biology, 64, p. 649
Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory (1981) Journal of Theoretical Biology, 88, p. 719
Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: analysis of the literature and model development (1993) Journal of Medical Entomology, 30, p. 1003
Trpis, M., Dry season survival of Aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania (1972) Bulletin of the World Health Organisaion, 47, p. 433
Horsfall, W.R., (1955) Mosquitoes: Their Bionomics and Relation to Disease, , Ronald, New York, USA
Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (1958) Bulletin of the Entomological Research, 49, p. 157
Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of culex quinquefasciatus and Aedes aegypti (diptera: Culicidae) (1990) Journal of Medicinal Entomology, 27, p. 892
Fay, R.W., The biology and bionomics of Aedes aegypti in the laboratory (1964) Mosquito News, 24, p. 300
Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity (1957) Bulletin of the Research Council Israel 6B, p. 220
Nayar, J.K., Sauerman, D.M., The effects of nutrition on survival and fecundity in florida mosquitoes. part 3. utilization of blood and sugar for fecundity (1975) Journal of Medicinal Entomology, 12, p. 220
ISSN:00255564
DOI:10.1016/j.mbs.2009.10.005