Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito

We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Otero, M.
Otros Autores: Solari, H.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16045caa a22018137a 4500
001 PAPER-8191
003 AR-BaUEN
005 20230518203800.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-72449203090 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MABIA 
100 1 |a Otero, M. 
245 1 0 |a Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito 
260 |c 2010 
270 1 0 |m Otero, M.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon 1 Ciudad Universitaria, 1428 Ciudad Autonoma de Buenos Aires, Argentina; email: mjotero@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Hunt, M., Microbiology and Immunology, , http://www.med.sc.edu:85/mhunt/arbo.htm, On-line, University of South Carolina, School of Medicine, South Carolina, United States, 2007, Available from 
504 |a Dengue hemorrhagic fever (1998) Diagnosis Treatment Prevention and Control, , WHO, second ed, World Health Organization, Ginebra, Suiza 
504 |a N. Schweigmann, R. Boffi, Aedes aegypti y aedes albopictus: Situación entomológica en la región, in: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, Buenos Aires, 1998, p. 259; de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., Atmospheric control of Aedes aegypti populations in buenos aires (argentina) and its variability (2000) International Journal of Biometerology, 44, p. 148 
504 |a Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., Dengue transmission risk maps of argentina (2001) Tropical Medicine and International Health, 6 (3), p. 170 
504 |a Seijo, A., Situación del dengue en la argentina (2007) Boletín de la Asociación Argentina de Microbiología, 175, p. 1 
504 |a Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ulv) insecticide applications on dengue epidemics (1992) American Journal of Tropical Medicinal Hygiene, 47, p. 709 
504 |a Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Mathematical Biosciences, 150, p. 131 
504 |a Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) Journal of Mathematical Biology, 38, p. 220 
504 |a Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Mathematical Biosciences, 167, p. 51 
504 |a Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms (2002) Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, p. 387 
504 |a Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Mathematical and Computer Modelling, 37, p. 949 
504 |a Derouich, M., Boutayeb, A., Twizell, E.H., A model of dengue fever (2003) Biomedical Engineering Online, 2, p. 4 
504 |a Tran, A., Raffy, M., On the dynamics of dengue epidemics from large-scale information (2006) Theoretical Population Biology, 69, p. 3 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results (1995) American Journal of Tropical Medicinal Hygiene, 53, p. 489 
504 |a L.B.L. Santos, M.C. Costa, S.T.R. Pinho, R.F.S. Andrade, F.R. Barreto, M.G. Teixeira, M.L. Barreto, Periodic forcing in a three level cellular automata model for a vector transmitted disease, arXiv:0810.0384v1, 2008; Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: formulation and application to a city with temperate climate (2006) Bulletin of the Mathematical Biology, 68, p. 1945 
504 |a Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bulletin of Mathematical Biology, 70, p. 1297 
504 |a Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of Aedes aegypti in wat samphaya Bangkok Thailand (1972) Bulletin of the World Health Organisation, 46, p. 211 
504 |a Christophers, R., (1960) Aedes aegypti (L.), the yellow fever mosquito, , Cambridge University Press, Cambridge 
504 |a Carbajo, A.E., Curto, S.I., Schweigmann, N., Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in buenos aires: southern fringe bionomics of an introduced vector (2006) Medical and Veterinary Entomology, 20, p. 209 
504 |a Wolfinsohn, M., Galun, R., A method for determining the flight range of Aedes aegypti (linn.) (1953) Bullentin of the Research Council of Israel, 2, p. 433 
504 |a Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs (1995) American Journal of Tropical Medicinal Hygiene, 52, p. 177 
504 |a Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites (1998) Journal of Medicinal Entomology, 35 (4), p. 578 
504 |a Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York 
504 |a Andersson, H., Britton, T., (2000) Lecture Notes in Statistics, 151. , Springer-Verlag, Berlin 
504 |a Solari, H.G., Natiello, M.A., Stochastic population dynamics: the poisson approximation (2003) Physical Review E, 67, p. 031918 
504 |a Aparicio, J.P., Solari, H.G., Population dynamics: a Poissonian approximation and its relation to the langevin process (2001) Physical Review Letters, 86, p. 4183 
504 |a Carbajo, A.E., Gomez, S.M., Curto, S.I., Schweigmann, N., Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de buenos aires (2004) Medicina, 64, p. 231 
504 |a Focks, D.A., Brenner, R.J., Hayes, J., Daniels, E., Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts (2000) American Journal of Tropical Medicinal Hygiene, 62 (1), p. 11 
504 |a Bartlett, M.S., The relevance of stochastic models for large-scale epidemiological phenomena (1964) Applied Statistics, 13 (1), p. 2 
504 |a Lloyd, A.L., Zhang, J., Root, A.M., Stochasticity and heterogeneity in host vector models (2007) Interface, 4, p. 851 
504 |a WHO, Yellow Fever, World Health Organization, Ginebra, Suiza, 2001, fact sheet 100; Simmons, J.S., Dengue fever (1933) The American Journal of Tropical Medicine XI, p. 77 
504 |a Massad, E., Coutnho, F.A.B., Burattini, M.N., Lopez, L.F.F., The risk of yellow fever in a dengue-infested area (2001) Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, p. 370 
504 |a Dégallier, P.N., Hervé, J.P., Rosa, A.F.A.T.D., Sa, G.C., Aedes aegypti (l.): Importance de sa bioécologie dans la transmission de la dengue et des autres arbobirus (1988) Bulletin des Societes Pathologie Exotique, 81, p. 97 
504 |a Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clinical Microbiology Review, 11, p. 480 
504 |a Vainio, J., Cutts, F., Yellow fever (1998), Tech. Rep, World Health Organization, Geneva; van der Most, R.G., Murali-JKrishna, K., Ahmed, R., Strauss, J.H., Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific cd8 t-cell response (2000) Journal of Virology, 74, p. 8094 
504 |a Chowella, G., Diaz-Dueñas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Mathematical Biosciences, 208, p. 571 
504 |a Nishiura, H., Halstead, S.B., Natural history of dengue virus (denv)-1 and denv-4 infections: Reanalysis pf classic studies (2007) Journal of Infectious Diseases, 195, p. 1007 
504 |a Actualización casos de dengue en argentina, 10 de mayo de 2009, Tech. rep., Ministerio de Salud Pública de Argentina, Buenos Aires, 2009, Available from <http://www.msal.gov.ar/htm/Site/sala_situacion/index.asp>; Campaña de erradicacion del Aedes aegypti en la república argentina. informe final, Tech. Rep., Ministerio de Asistencia Social y Salud Publica, Argentina, Buenos Aires, 1964; Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., Scavuzzo, C., Space-time analysis of the dengue spreading dynamics in the 2004 tartagal outbreak northern argentina (2007) Acta Tropica, 103, p. 1 
504 |a Király, A., Jánosi, I.M., Stochastic modelling of daily temperature fluctuations (2002) Physical Review E, 65, p. 051102 
504 |a Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) Journal of Theoretical Biology, 64, p. 649 
504 |a Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory (1981) Journal of Theoretical Biology, 88, p. 719 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: analysis of the literature and model development (1993) Journal of Medical Entomology, 30, p. 1003 
504 |a Trpis, M., Dry season survival of Aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania (1972) Bulletin of the World Health Organisaion, 47, p. 433 
504 |a Horsfall, W.R., (1955) Mosquitoes: Their Bionomics and Relation to Disease, , Ronald, New York, USA 
504 |a Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (1958) Bulletin of the Entomological Research, 49, p. 157 
504 |a Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of culex quinquefasciatus and Aedes aegypti (diptera: Culicidae) (1990) Journal of Medicinal Entomology, 27, p. 892 
504 |a Fay, R.W., The biology and bionomics of Aedes aegypti in the laboratory (1964) Mosquito News, 24, p. 300 
504 |a Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity (1957) Bulletin of the Research Council Israel 6B, p. 220 
504 |a Nayar, J.K., Sauerman, D.M., The effects of nutrition on survival and fecundity in florida mosquitoes. part 3. utilization of blood and sugar for fecundity (1975) Journal of Medicinal Entomology, 12, p. 220 
520 3 |a We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations. © 2009 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA, X308 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA, 2008–2010 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT, PICTR 87/2002 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT, PICT 00932/2006 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET 
536 |a Detalles de la financiación: The authors acknowledge CONICET and the support given by the University of Buenos Aires under Grant X308 (2004–2007), X210 (2008–2010) and by the Agencia Nacional de Promoción Cientf´ica y Tecnológica (Argentina) under Grants PICTR 87/2002 and PICT 00932/2006 . Appendix A 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon 1 Ciudad Universitaria, 1428 Ciudad Autonoma de Buenos Aires, Argentina 
690 1 0 |a AEDES AEGYPTI 
690 1 0 |a DENGUE 
690 1 0 |a ECO-EPIDEMIOLOGY 
690 1 0 |a STOCHASTIC MODELS 
690 1 0 |a AEDES AEGYPTI 
690 1 0 |a CLIMATIC VARIATION 
690 1 0 |a DENGUE 
690 1 0 |a DISEASE DYNAMICS 
690 1 0 |a DISEASE TRANSMISSION 
690 1 0 |a ECO-EPIDEMIOLOGY 
690 1 0 |a EPIDEMIOLOGICAL MODELS 
690 1 0 |a LOW PROBABILITY 
690 1 0 |a SEASONAL VARIATION 
690 1 0 |a SPATIAL DYNAMICS 
690 1 0 |a STOCHASTIC DYNAMICAL MODEL 
690 1 0 |a SUSCEPTIBLE POPULATION 
690 1 0 |a EPIDEMIOLOGY 
690 1 0 |a PROBABILITY DISTRIBUTIONS 
690 1 0 |a RISK PERCEPTION 
690 1 0 |a STOCHASTIC SYSTEMS 
690 1 0 |a STOCHASTIC MODELS 
690 1 0 |a ARRIVAL DATE 
690 1 0 |a BREEDING SITE 
690 1 0 |a CLIMATE VARIATION 
690 1 0 |a DENGUE FEVER 
690 1 0 |a DISEASE TRANSMISSION 
690 1 0 |a DISEASE VECTOR 
690 1 0 |a EPIDEMIC 
690 1 0 |a EPIDEMIOLOGY 
690 1 0 |a HEALTH RISK 
690 1 0 |a MOSQUITO 
690 1 0 |a NUMERICAL MODEL 
690 1 0 |a POPULATION DISTRIBUTION 
690 1 0 |a PROBABILITY 
690 1 0 |a SEASONAL VARIATION 
690 1 0 |a STOCHASTICITY 
690 1 0 |a AEDES AEGYPTI 
690 1 0 |a ARBOVIRUS 
690 1 0 |a ARTICLE 
690 1 0 |a BREEDING 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a DENGUE 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a DISEASE TRANSMISSION 
690 1 0 |a EPIDEMIC 
690 1 0 |a HIDDEN MARKOV MODEL 
690 1 0 |a HUMAN 
690 1 0 |a NONHUMAN 
690 1 0 |a POPULATION DENSITY 
690 1 0 |a POPULATION DISPERSAL 
690 1 0 |a PROBABILITY 
690 1 0 |a RISK ASSESSMENT 
690 1 0 |a SEASONAL POPULATION DYNAMICS 
690 1 0 |a SEASONAL VARIATION 
690 1 0 |a SPECIES EXTINCTION 
690 1 0 |a STOCHASTIC MODEL 
690 1 0 |a TEMPERATURE DEPENDENCE 
690 1 0 |a YELLOW FEVER 
690 1 0 |a AEDES 
690 1 0 |a ANIMALS 
690 1 0 |a DENGUE 
690 1 0 |a DISEASE OUTBREAKS 
690 1 0 |a HUMANS 
690 1 0 |a INSECT VECTORS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a MODELS, STATISTICAL 
690 1 0 |a SEASONS 
690 1 0 |a STOCHASTIC PROCESSES 
690 1 0 |a URBAN POPULATION 
690 1 0 |a AEDES AEGYPTI 
651 4 |a ARGENTINA 
700 1 |a Solari, H.G. 
773 0 |d 2010  |g v. 223  |h pp. 32-46  |k n. 1  |p Math. Biosci.  |x 00255564  |w (AR-BaUEN)CENRE-6039  |t Mathematical Biosciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72449203090&doi=10.1016%2fj.mbs.2009.10.005&partnerID=40&md5=1e90faf0d659b3fc2523f1e27dfc1b54  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.mbs.2009.10.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00255564_v223_n1_p32_Otero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255564_v223_n1_p32_Otero  |y Registro en la Biblioteca Digital 
961 |a paper_00255564_v223_n1_p32_Otero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69144