A specific heat anomaly in multiwall carbon nanotubes as a possible sign of orientational order-disorder transition

We present micro-calorimetric specific heat measurements on different multiwall carbon nanotubes of large outer diameter, as a function of temperature in the range 10-120 K. A clear anomaly at 60 K with the shape of a peak is present in two of the samples, and both the height and the characteristic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jorge, G.A
Otros Autores: Bekeris, V., Escobar, M.M, Goyanes, Silvia Nair, Zilli, D., Cukierman, A.L, Candal, R.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10535caa a22009977a 4500
001 PAPER-8125
003 AR-BaUEN
005 20250423094611.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70449534790 
030 |a CRBNA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Jorge, G.A. 
245 1 2 |a A specific heat anomaly in multiwall carbon nanotubes as a possible sign of orientational order-disorder transition 
260 |b Elsevier Ltd  |c 2010 
270 1 0 |m Jorge, G.A.; Laboratorio de Bajas Temperaturas, Departamento de Física, FCEyN-UBA, Pab. 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: gjorge@df.uba.ar 
504 |a Yi, W., Lu, L., Zhang, D.-L., Pan, Z.W., Xie, S.S., Linear specific heat of carbon nanotubes (1999) Phys Rev B, 59 (14), pp. R9015-R9018 
504 |a Mizel, A., Benedict, L.X., Cohen, M.L., Louie, S.G., Zettl, A., Budraa, N.K., Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes (1999) Phys Rev B, 60 (5), pp. 3264-3270 
504 |a Masarapu, C., Henry, L.L., Wei, B., Specific heat of aligned multiwalled carbon nanotubes (2005) Nanotechnology, 16 (9), pp. 1490-1494 
504 |a Heiney, P.A., Fischer, J.E., McGhie, A.R., Romanow, W.J., Denenstein, A.M., McCauley Jr., J.P., Orientational ordering transition in solid C60 (1991) Phys Rev Lett, 66 (22), pp. 2911-2914 
504 |a Matsuo, T., Suga, H., David, W.I.F., Ibberson, R.M., Bernier, P., Zahab, A., The heat capacity of solid C60 (1992) Solid State Commun, 83 (9), pp. 711-715 
504 |a Fischer, J.E., McGhie, A.R., Estrada, J.K., Haluška, M., Kuzmany, H., ter Meer, H.U., Heat capacity and the orientational transition in solid C60 (1996) Phys Rev B, 53 (17), pp. 11418-11424 
504 |a Miyazaki, Y., Sorai, M., Lin, R., Dworkin, A., Szwarc, H., Godard, J., Heat capacity of a giant single crystal of C60 (1999) Chem Phys Lett, 305 (3-4), pp. 293-297 
504 |a Yu, R.C., Tea, N., Salamon, M.B., Lorents, D., Malhotra, R., Thermal conductivity of single crystal C60 (1992) Phys Rev Lett, 68 (13), pp. 2050-2053 
504 |a Gugenberger, F., Heid, R., Meingast, C., Adelmann, P., Braun, M., Wühl, H., Glass transition in single-crystal C60 studied by high-resolution dilatometry (1992) Phys Rev Lett, 69 (26), pp. 3774-3777 
504 |a David, W.I.F., Ibberson, R.M., Dennis, T.J.S., Hare, J.P., Prassides, K., Structural phase transitions in the fullerene C60 (1992) Europhys Lett, 18 (3), pp. 219-225 
504 |a Press, W., Kollmai, A., CH4: tunneling states, rotations, and phase transition in a quantum molecular crystal (1975) Solid State Commun, 17 (4), pp. 405-408 
504 |a Silvera, I.F., The solid molecular hydrogens in the condensed phase: fundamentals and static properties (1980) Rev Mod Phys, 52 (2), pp. 393-452 
504 |a Kolmogorov, A.N., Crespi, V.H., Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes (2000) Phys Rev Lett, 85 (22), pp. 4727-4730 
504 |a Kis, A., Jensen, K., Aloni, S., Mickelson, W., Zettl, A., Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes (2006) Phys Rev Lett, 97 (2), pp. 025501-1-025501-4 
504 |a Belikov, A.V., Lozovik, Y.E., Nikolaev, A.G., Popov, A.M., Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion (2004) Chem Phys Lett, 385 (1-2), pp. 72-78 
504 |a Bichoutskaia, E., Heggie, M.I., Popov, A.M., Lozovik, Y.E., Interwall interaction and elastic properties of carbon nanotubes (2006) Phys Rev B, 73 (4), pp. 045435-1-045435-9 
504 |a Damnjanovic, M., Vukovic, T., Milosevic, I., Super-slippery carbon nanotubes (2002) Eur Phys J B, 25 (2), pp. 131-134 
504 |a Vavro, J., Llaguno, M.C., Satishkumar, B.C., Luzzi, D.E., Fischer, J.E., Electrical and thermal properties of C60-filled single-wall carbon nanotubes (2002) Appl Phys Lett, 80 (8), pp. 1450-1452 
504 |a Kwon, Y.K., Tománek, D., Orientational melting in carbon nanotube ropes (2000) Phys Rev Lett, 84 (7), pp. 1483-1486 
504 |a Kwon, Y.K., Tománek, D., Electronic and structural properties of multiwall carbon nanotubes (1998) Phys Rev B, 58 (24), pp. R16001-R16004 
504 |a Lozovik, Y.E., Popov, A.M., Orientational melting of two-shell carbon nanoparticles: molecular dynamics study (2000) Chem Phys Lett, 328 (4-6), pp. 355-362 
504 |a Zilli, D., Chiliotte, C., Escobar, M.M., Bekeris, V., Rubiolo, G.R., Cukierman, A.L., Magnetic properties of multi-walled carbon nanotube epoxy composites (2005) Polymer, 46 (16), pp. 6090-6095 
504 |a Escobar, M.M., Moreno, S., Candal, R.J., Marchi, M., Caso, A., Polosecki, P., Synthesis of carbon nanotubes by CVD: effect of acetylene pressure on nanotubes characteristics (2007) Appl Surface Sci, 254, pp. 251-256 
504 |a Escobar, M.M., Goyanes, S., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G.H., Purification and functionalization of carbon nanotubes by classical and advanced oxidation processes (2009) J Nanosci Nanotechnol, 9, pp. 6228-6233 
504 |a Denlinger, D.W., Abarra, E.N., Allen, K., Rooney, P.W., Messer, M.T., Watson, S.K., Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K (1994) Rev Sci Instrum, 65 (4), pp. 946-959 
504 |a Bachmann, R., DiSalvo, J., Geballe, T.H., Greene, R.L., Howard, R.E., King, C.N., Heat capacity measurements on small samples at low temperatures (1972) Rev Sci Instrum, 43 (2), pp. 205-214 
504 |a Benedict, L.X., Louie, S.G., Cohen, M.L., Heat capacity of carbon nanotubes (1996) Solid State Commun, 100 (3), pp. 177-180 
504 |a Jorge, G.A., Bekeris, V., Acha, C., Escobar, M.M., Goyanes, S., Zilli, D., Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures (2009) J Phys Conf Ser, 167, p. 012008 
504 |a Nihira, T., Iwata, T., Temperature dependence of lattice vibrations and analysis of the specific heat of graphite (2003) Phys Rev B, 68 (13), pp. 134305-1-134305-16 
504 |a Schaefer, C., Hofmann, T., Wallacher, D., Huber, P., Knorr, K., Melting and freezing of argon in a granular packing of linear mesopore arrays (2008) Phys Rev Lett, 100 (17), pp. 175701-1-175701-4 
504 |a Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Comparative analysis of electric, magnetic and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polym Compos, 28, pp. 612-617 
504 |a Stephens, R.B., Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids (1973) Phys Rev B, 8 (6), pp. 2896-2905 
504 |a Goze Bac, C., Latil, S., Vaccarini, L., Bernier, P., Gaveau, P., Tahir, S., 13C NMR evidence for dynamics of nanotubes in ropes (2001) Phys Rev B, 63 (10), p. 100302 
506 |2 openaire  |e Política editorial 
520 3 |a We present micro-calorimetric specific heat measurements on different multiwall carbon nanotubes of large outer diameter, as a function of temperature in the range 10-120 K. A clear anomaly at 60 K with the shape of a peak is present in two of the samples, and both the height and the characteristic temperature of the peak are independent of magnetic field and do not exhibit thermal hysteresis, discarding magnetic degrees of freedom related to Fe seeds or contributions from adsorbed gases. These features suggest that the anomaly may be caused by a structural change. As the anomaly is also unaffected by induced intertube disorder, it may be related with a melting of orientational dislocations of individual tubes within multiwall nanotubes, an effect that was theoretically predicted to occur in carbon nanotubes and represents a distinctive feature of asymmetric molecular systems. © 2009 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2006-01201 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP5609 
536 |a Detalles de la financiación: This work was supported by CONICET (PIP5609) and ANPCyT (PICT2006-01201). 
593 |a Laboratorio de Bajas Temperaturas, Departamento de Física, FCEyN-UBA, Pab. 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, FCEyN-UBA, Pab. 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, FCEyN-UBA, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a PINMATE, Departamento de Industrias, FCEyN-UBA, Pab. Industrias, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Instituto de Fisicoquímica de Materiales, Ambiente y Energía, CONICET-UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a DEGREES OF FREEDOM (MECHANICS) 
690 1 0 |a ORDER DISORDER TRANSITIONS 
690 1 0 |a SPECIFIC HEAT 
690 1 0 |a THERMAL VARIABLES MEASUREMENT 
690 1 0 |a YARN 
690 1 0 |a ADSORBED GAS 
690 1 0 |a CHARACTERISTIC TEMPERATURE 
690 1 0 |a MOLECULAR SYSTEMS 
690 1 0 |a MULTIWALL NANOTUBES 
690 1 0 |a ORIENTATIONAL ORDERINGS 
690 1 0 |a OUTER DIAMETERS 
690 1 0 |a THERMAL HYSTERESIS 
690 1 0 |a MULTIWALLED CARBON NANOTUBES (MWCN) 
700 1 |a Bekeris, V. 
700 1 |a Escobar, M.M. 
700 1 |a Goyanes, Silvia Nair 
700 1 |a Zilli, D. 
700 1 |a Cukierman, A.L. 
700 1 |a Candal, R.J. 
773 0 |d Elsevier Ltd, 2010  |g v. 48  |h pp. 525-530  |k n. 2  |p Carbon  |x 00086223  |w (AR-BaUEN)CENRE-4114  |t Carbon 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70449534790&doi=10.1016%2fj.carbon.2009.09.073&partnerID=40&md5=bcfbeb9f828ef72a163873f345d0d0a1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.carbon.2009.09.073  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00086223_v48_n2_p525_Jorge  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086223_v48_n2_p525_Jorge  |y Registro en la Biblioteca Digital 
961 |a paper_00086223_v48_n2_p525_Jorge  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69078