Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile
Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ̃972°C (±25) and log fO2 -10.33-10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ̃942°C (±26) and log fO2 -10. 68 (±0.2), with ̃2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ̃20 km (e.g., Annen et al. in J Petrol47(3):505-539, 2006)], and the inferred amphibolite facies [̃24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267-309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ̃20-24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite. © Springer-Verlag 2009. |
|---|---|
| Bibliografía: | Andersen, D.J., Lindsley, D.H., Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides (1988) Am Mineral, 73 (7-8), pp. 714-726 Andersen, D.J., Lindsley, D.H., Davidson, P.M., QUILF: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz (1993) Comput Geosci, 19, pp. 1333-1350 Anderson, A.T., The before-eruption water content of some high-alumina magmas (1973) Bull Volcanol, 37 (4), pp. 530-552 Annen, C., Sparks, R.S.J., Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust (2002) Earth Planet Sci Lett, 203 (3-4), pp. 937-955 Annen, C., Blundy, J.D., Sparks, R.S.J., The genesis of intermediate and silicic magmas in deep crustal hot zones (2006) J Petrol, 47 (3), pp. 505-539 Bacon, C.R., Hirschmann, M.M., Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides (1988) Am Mineral, 73, pp. 57-61 Bebout, G.E., Field-based evidence for devolatilization in subduction zones: Implications for Arc magmatism (1991) Science, 251 (4992), pp. 413-416 Bitschene, P.R., Fernández, M.I., Volcanology and petrology of fallout ashes from the August 1991 eruption of the Hudson Volcano (Patagonian Andes) (1995) The August 1991 Eruption of the Hudson Volcano (Patagonian Andes); A Thousand Days After, pp. 27-54. , Cuvillier, Gottingen Bitschene, P.R., Fernández, M.I., Arias, N., Arizmendi, A., Griznik, M., Nillni, A., Volcanology and environmental impact of the August 1991 eruption of the Hudson volcano (Patagonian Andes, Chile) (1993) Zbl Geol Palaont Teil IH, 1 (2), pp. 165-177 Blundy, J., Cashman, K., Humphreys, M., Magma heating by decompression-driven crystallization beneath andesite volcanoes (2006) Nature, 443 (7107), pp. 76-80 Carey, S., Scasso, R.A., Kratzmann, D., Naranjo, J.A., Bande, A., Stratigraphy and Melt Compositions of the 3. 6 and 6. 7 ka Plinian Eruptions of Hudson Volcano, Chile (2005) AGU Fall Meeting 2005, , Posters V41B-1443 San Francisco Carr, M., Igpet Software, p. 2005. , CD-ROM Costa, F., Scaillet, B., Pichavant, M., Petrological and experimental constraints on the pre-eruption conditions of Holocene Dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas (2004) J Petrol, 45 (4), pp. 855-881 Cottrell, E., Gardner, J.E., Rutherford, M.J., Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece) (1999) Contrib Mineral Petrol, 135 (4), pp. 315-331 Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., Amphibole "sponge" in arc crust? (2007) Geology, 35 (9), pp. 787-790 Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., Rutherford, M.J., Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses (1995) Am Mineral, 80, pp. 319-328 Dixon, J.E., Stolper, E.M., An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing (1995) J Petrol, 36 (6), pp. 1633-1646 Feeley, T.C., Davidson, J.P., Petrology of calc-alkaline lavas at Volcán Ollagüe and the origin of compositional diversity at central Andean stratovolcanoes (1994) J Petrol, 35 (5), pp. 1295-1340 Forsythe, R.D., Nelson, E.P., Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao basin, southern Chile (1985) Tectonics, 4, pp. 477-495 Gill, J.B., (1981) Orogneic Andesites and Plate Tectonics, p. 390. , New York: Springer Glazner, A.F., Foundering of mafic plutons and density stratification of continental crust (1994) Geology, 22, pp. 435-438 Grove, T.L., Baker, M.B., Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends (1984) J Geophys Res, 89 (B5), pp. 3253-3274 Grove, T.L., Kinzler, R.J., Petrogenesis of andesites (1986) Ann Rev Earth Planet Sci, 14, pp. 417-454 Grove, T.L., Gerlach, D.C., Sando, T.W., Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing (1982) Contrib Mineral Petrol, 80, pp. 160-182 Gust, D.A., Perfit, M.R., Phase relations on a high-Mg basalt from the Aleutian island arc: Implications for primary island arc basalts and high-Al basalts (1987) Contrib Mineral Petrol, 97 (1), pp. 7-18 Gutiérrez, F., Gioncada, A., Gonzalez-Ferran, O., Lahsen, A., Mazzuoli, R., The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge-trench collision environment (2005) J Volcanol Geoth Res, 145, pp. 207-233 Hammer, J.E., Rutherford, M.J., An experimental study of the kinematics of decompression-induced crystallization in silicic melt (2002) J Geophys Res, 107 (B1), pp. 1-24 Hawkesworth, C.J., Gallagher, K., Hergot, J.M., McDermott, F., Mantle and slab contributions in arc magmas (1993) Ann Rev Earth Planet Sci, 21, pp. 175-204 Ippach, P., (2001) Untersuchung der klimarelevanten Spurengase der Eruption des Cerro Hudson (Sud-Chile) im August 1991, p. 159. , Ph. D. Thesis, Christian Albrechts Universitat zu Keil Irvine, T.N., Baragaar, W.R.A., A guide to the chemical classification of the common volcanic rocks (1971) Can J Earth Sci, 8 (5), pp. 523-548 Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., Composition of altered oceanic crust at ODP Sites 801 and 1149 (2003) Geochem Geophys Geosyst, 4 (6), p. 8910. , doi: 10.1029/2002GC000435 Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J Geol Soc, 160, pp. 57-70 Kilian, R., Ippach, P., López-Escobar, L., Geology, geochemistry and recent activity of the Hudson Volcano, Southern Chile (1993) Second ISAG, , Chile deriva continental geoquímica, Deriva Continental, volcanicas, MORB cretacica, terciaria Oxford Kratzmann, D., Carey, S.N., Scasso, R.A., Naranjo, J.A., Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile (2009) Bull Volcanol, 71, pp. 419-439. , doi:10.1007/s00445-008-0243-x Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali silica diagram (1986) J Petrol, 27, pp. 745-750 Le bas, M.J., Le Maitre, R.W., Wooley, A.R., The construction of the total alkali-silica chemical classification of volcanic rocks (1992) Mineral Petrol, 46 (1), pp. 1-22 López-Escobar, L., Kilian, R., Kempton, P., Tagiri, M., Petrography and geochemistry of quaternary rocks from the Southern Volcanic zone of the Andes between 41°30′ and 46°00′S, Chile (1993) Rev Geol Chile, 20 (1), pp. 33-55 Luhr, J.F., Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón Volcano (1990) J Petrol, 31 (5), pp. 1071-1114 Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines (2006) Earth Planet Sci Lett, 243 (3-4), pp. 581-593 Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A., Faure, K., Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses (2002) Am Mineral, 87, pp. 813-821 Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.-L., Traineau, H., Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar (1999) J Geophys Res, 104 (B12), pp. 29+453-29+470 Moore, G., Carmichael, I.S.E., The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth (1998) Contrib Mineral Petrol, 130, pp. 304-319 Moore, G., Vennemann, T., Carmichael, I.S.E., An empirical model for the solubility of H2O in magmas to 3 kilobars (1998) Am Mineral, 83, pp. 36-42 Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bull Volcanol, 59, pp. 291-306 Naranjo, J.A., Moreno, H., Banks, N., La erupción del Volcán Hudson en 1991 (46oS), Región XI, Aisén (1993) Chile Boletin, 44, pp. 1-50 Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirata, D., Anma, R., Nagao, K., Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages (2004) Rev Geol Chile, 31 (2), pp. 207-224 Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G., Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling (2007) Chem Geol, 241, pp. 177-206 Roeder, P.L., Emslie, R.F., Olivine-liquid equilibrium (1970) Contrib Mineral Petrol, 29, pp. 275-289 Rudnick, R.L., Fountain, D.M., Nature and composition of the continental crust: A lower crustal perspective (1995) Rev Geophys, 33, pp. 267-309 Rutherford, M.J., Sigurdsson, H., Carey, S., Davis, A., The May 18th, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria (1985) J Geophys Res, 90 (B4), pp. 2929-2947 Scaillet, B., Evans, B.W., The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the Dacite Magma (1999) J Petrol, 40 (3), pp. 381-411 Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile (2005) Lat Am J Sediment Basin Anal, 12 (1), pp. 3-21 Scasso, R.A., Corbella, H., Tiberi, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bull Volcanol, 56, pp. 121-132 Sisson, T.W., Grove, T.L., Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism (1993) Contrib Mineral Petrol, 113, pp. 143-166 Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54oS) derived from the Hudson Volcano (46oS): Evidence for a large explosive eruption (1991) Rev Geol Chile, 18 (2), pp. 139-146 Stern, C.R., Active Andean volcanism: Its geologic and tectonic setting (2004) Rev Geol Chile, 31 (2), pp. 161-206 Stern, C.R., Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes (2008) Bull Volcanol, 70, pp. 435-454. , doi:10.1007/s00445-007-0148-z Stern, C.R., Futa, K., Muehlenbachs, K., Isotope and trace element data for orogenic andesites from the austral andes (1984) Andean Magmatism: Chemical and Isotopic Constraints, pp. 31-46. , In: Harmon RS, Barreiro BA (eds) Shiva Geology Series Taddeucci, J., Pompolio, M., Scarlato, P., Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): Inferences from glass chemistry and crystal size distribution of ash particles (2004) J Volcanol Geophys Res, 137, pp. 33-54 Tatsumi, Y., Formation of the volcanic front in subduction zones (1986) Geophys Res Lett, 13 (8), pp. 717-720 Tatsumi, Y., Eggins, S., (1995) Subduction Zone Magmatism, p. 211. , Cambridge: Blackwell Science Thompson, A.B., Water in the Earth's upper mantle (1992) Nature, 358 (6384), pp. 295-302 Tormey, D.R., Frey, F.A., López-Escobar, L., Geochemistry of the Active Azufre-Planchon-Peteroa volcanic complex, Chile (35°15′S): Evidence for multiple sources and process in a Cordilleran Arc Magmatic System (1995) J Petrol, 36 (2), pp. 265-298 Venezky, D.Y., Rutherford, M.J., Petrology and Fe-Ti oxide reequilibration of the 1991 Mount Unzen mixed magma (1999) J Volcanol Geoth Res, 89 (1-4), pp. 213-230 Wilson, M., (1989) Igneous Petrogenesis, , Boston: Kluwer |
| ISSN: | 00107999 |
| DOI: | 10.1007/s00410-009-0426-1 |