Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile

Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kratzmann, D.J
Otros Autores: Carey, S., Scasso, R.A, Naranjo, J.-A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ̃972°C (±25) and log fO2 -10.33-10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ̃942°C (±26) and log fO2 -10. 68 (±0.2), with ̃2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ̃20 km (e.g., Annen et al. in J Petrol47(3):505-539, 2006)], and the inferred amphibolite facies [̃24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267-309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ̃20-24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite. © Springer-Verlag 2009.
Bibliografía:Andersen, D.J., Lindsley, D.H., Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides (1988) Am Mineral, 73 (7-8), pp. 714-726
Andersen, D.J., Lindsley, D.H., Davidson, P.M., QUILF: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz (1993) Comput Geosci, 19, pp. 1333-1350
Anderson, A.T., The before-eruption water content of some high-alumina magmas (1973) Bull Volcanol, 37 (4), pp. 530-552
Annen, C., Sparks, R.S.J., Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust (2002) Earth Planet Sci Lett, 203 (3-4), pp. 937-955
Annen, C., Blundy, J.D., Sparks, R.S.J., The genesis of intermediate and silicic magmas in deep crustal hot zones (2006) J Petrol, 47 (3), pp. 505-539
Bacon, C.R., Hirschmann, M.M., Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides (1988) Am Mineral, 73, pp. 57-61
Bebout, G.E., Field-based evidence for devolatilization in subduction zones: Implications for Arc magmatism (1991) Science, 251 (4992), pp. 413-416
Bitschene, P.R., Fernández, M.I., Volcanology and petrology of fallout ashes from the August 1991 eruption of the Hudson Volcano (Patagonian Andes) (1995) The August 1991 Eruption of the Hudson Volcano (Patagonian Andes); A Thousand Days After, pp. 27-54. , Cuvillier, Gottingen
Bitschene, P.R., Fernández, M.I., Arias, N., Arizmendi, A., Griznik, M., Nillni, A., Volcanology and environmental impact of the August 1991 eruption of the Hudson volcano (Patagonian Andes, Chile) (1993) Zbl Geol Palaont Teil IH, 1 (2), pp. 165-177
Blundy, J., Cashman, K., Humphreys, M., Magma heating by decompression-driven crystallization beneath andesite volcanoes (2006) Nature, 443 (7107), pp. 76-80
Carey, S., Scasso, R.A., Kratzmann, D., Naranjo, J.A., Bande, A., Stratigraphy and Melt Compositions of the 3. 6 and 6. 7 ka Plinian Eruptions of Hudson Volcano, Chile (2005) AGU Fall Meeting 2005, , Posters V41B-1443 San Francisco
Carr, M., Igpet Software, p. 2005. , CD-ROM
Costa, F., Scaillet, B., Pichavant, M., Petrological and experimental constraints on the pre-eruption conditions of Holocene Dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas (2004) J Petrol, 45 (4), pp. 855-881
Cottrell, E., Gardner, J.E., Rutherford, M.J., Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece) (1999) Contrib Mineral Petrol, 135 (4), pp. 315-331
Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., Amphibole "sponge" in arc crust? (2007) Geology, 35 (9), pp. 787-790
Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., Rutherford, M.J., Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses (1995) Am Mineral, 80, pp. 319-328
Dixon, J.E., Stolper, E.M., An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing (1995) J Petrol, 36 (6), pp. 1633-1646
Feeley, T.C., Davidson, J.P., Petrology of calc-alkaline lavas at Volcán Ollagüe and the origin of compositional diversity at central Andean stratovolcanoes (1994) J Petrol, 35 (5), pp. 1295-1340
Forsythe, R.D., Nelson, E.P., Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao basin, southern Chile (1985) Tectonics, 4, pp. 477-495
Gill, J.B., (1981) Orogneic Andesites and Plate Tectonics, p. 390. , New York: Springer
Glazner, A.F., Foundering of mafic plutons and density stratification of continental crust (1994) Geology, 22, pp. 435-438
Grove, T.L., Baker, M.B., Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends (1984) J Geophys Res, 89 (B5), pp. 3253-3274
Grove, T.L., Kinzler, R.J., Petrogenesis of andesites (1986) Ann Rev Earth Planet Sci, 14, pp. 417-454
Grove, T.L., Gerlach, D.C., Sando, T.W., Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing (1982) Contrib Mineral Petrol, 80, pp. 160-182
Gust, D.A., Perfit, M.R., Phase relations on a high-Mg basalt from the Aleutian island arc: Implications for primary island arc basalts and high-Al basalts (1987) Contrib Mineral Petrol, 97 (1), pp. 7-18
Gutiérrez, F., Gioncada, A., Gonzalez-Ferran, O., Lahsen, A., Mazzuoli, R., The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge-trench collision environment (2005) J Volcanol Geoth Res, 145, pp. 207-233
Hammer, J.E., Rutherford, M.J., An experimental study of the kinematics of decompression-induced crystallization in silicic melt (2002) J Geophys Res, 107 (B1), pp. 1-24
Hawkesworth, C.J., Gallagher, K., Hergot, J.M., McDermott, F., Mantle and slab contributions in arc magmas (1993) Ann Rev Earth Planet Sci, 21, pp. 175-204
Ippach, P., (2001) Untersuchung der klimarelevanten Spurengase der Eruption des Cerro Hudson (Sud-Chile) im August 1991, p. 159. , Ph. D. Thesis, Christian Albrechts Universitat zu Keil
Irvine, T.N., Baragaar, W.R.A., A guide to the chemical classification of the common volcanic rocks (1971) Can J Earth Sci, 8 (5), pp. 523-548
Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., Composition of altered oceanic crust at ODP Sites 801 and 1149 (2003) Geochem Geophys Geosyst, 4 (6), p. 8910. , doi: 10.1029/2002GC000435
Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J Geol Soc, 160, pp. 57-70
Kilian, R., Ippach, P., López-Escobar, L., Geology, geochemistry and recent activity of the Hudson Volcano, Southern Chile (1993) Second ISAG, , Chile deriva continental geoquímica, Deriva Continental, volcanicas, MORB cretacica, terciaria Oxford
Kratzmann, D., Carey, S.N., Scasso, R.A., Naranjo, J.A., Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile (2009) Bull Volcanol, 71, pp. 419-439. , doi:10.1007/s00445-008-0243-x
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali silica diagram (1986) J Petrol, 27, pp. 745-750
Le bas, M.J., Le Maitre, R.W., Wooley, A.R., The construction of the total alkali-silica chemical classification of volcanic rocks (1992) Mineral Petrol, 46 (1), pp. 1-22
López-Escobar, L., Kilian, R., Kempton, P., Tagiri, M., Petrography and geochemistry of quaternary rocks from the Southern Volcanic zone of the Andes between 41°30′ and 46°00′S, Chile (1993) Rev Geol Chile, 20 (1), pp. 33-55
Luhr, J.F., Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón Volcano (1990) J Petrol, 31 (5), pp. 1071-1114
Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines (2006) Earth Planet Sci Lett, 243 (3-4), pp. 581-593
Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A., Faure, K., Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses (2002) Am Mineral, 87, pp. 813-821
Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.-L., Traineau, H., Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar (1999) J Geophys Res, 104 (B12), pp. 29+453-29+470
Moore, G., Carmichael, I.S.E., The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth (1998) Contrib Mineral Petrol, 130, pp. 304-319
Moore, G., Vennemann, T., Carmichael, I.S.E., An empirical model for the solubility of H2O in magmas to 3 kilobars (1998) Am Mineral, 83, pp. 36-42
Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bull Volcanol, 59, pp. 291-306
Naranjo, J.A., Moreno, H., Banks, N., La erupción del Volcán Hudson en 1991 (46oS), Región XI, Aisén (1993) Chile Boletin, 44, pp. 1-50
Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirata, D., Anma, R., Nagao, K., Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages (2004) Rev Geol Chile, 31 (2), pp. 207-224
Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G., Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling (2007) Chem Geol, 241, pp. 177-206
Roeder, P.L., Emslie, R.F., Olivine-liquid equilibrium (1970) Contrib Mineral Petrol, 29, pp. 275-289
Rudnick, R.L., Fountain, D.M., Nature and composition of the continental crust: A lower crustal perspective (1995) Rev Geophys, 33, pp. 267-309
Rutherford, M.J., Sigurdsson, H., Carey, S., Davis, A., The May 18th, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria (1985) J Geophys Res, 90 (B4), pp. 2929-2947
Scaillet, B., Evans, B.W., The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the Dacite Magma (1999) J Petrol, 40 (3), pp. 381-411
Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile (2005) Lat Am J Sediment Basin Anal, 12 (1), pp. 3-21
Scasso, R.A., Corbella, H., Tiberi, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bull Volcanol, 56, pp. 121-132
Sisson, T.W., Grove, T.L., Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism (1993) Contrib Mineral Petrol, 113, pp. 143-166
Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54oS) derived from the Hudson Volcano (46oS): Evidence for a large explosive eruption (1991) Rev Geol Chile, 18 (2), pp. 139-146
Stern, C.R., Active Andean volcanism: Its geologic and tectonic setting (2004) Rev Geol Chile, 31 (2), pp. 161-206
Stern, C.R., Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes (2008) Bull Volcanol, 70, pp. 435-454. , doi:10.1007/s00445-007-0148-z
Stern, C.R., Futa, K., Muehlenbachs, K., Isotope and trace element data for orogenic andesites from the austral andes (1984) Andean Magmatism: Chemical and Isotopic Constraints, pp. 31-46. , In: Harmon RS, Barreiro BA (eds) Shiva Geology Series
Taddeucci, J., Pompolio, M., Scarlato, P., Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): Inferences from glass chemistry and crystal size distribution of ash particles (2004) J Volcanol Geophys Res, 137, pp. 33-54
Tatsumi, Y., Formation of the volcanic front in subduction zones (1986) Geophys Res Lett, 13 (8), pp. 717-720
Tatsumi, Y., Eggins, S., (1995) Subduction Zone Magmatism, p. 211. , Cambridge: Blackwell Science
Thompson, A.B., Water in the Earth's upper mantle (1992) Nature, 358 (6384), pp. 295-302
Tormey, D.R., Frey, F.A., López-Escobar, L., Geochemistry of the Active Azufre-Planchon-Peteroa volcanic complex, Chile (35°15′S): Evidence for multiple sources and process in a Cordilleran Arc Magmatic System (1995) J Petrol, 36 (2), pp. 265-298
Venezky, D.Y., Rutherford, M.J., Petrology and Fe-Ti oxide reequilibration of the 1991 Mount Unzen mixed magma (1999) J Volcanol Geoth Res, 89 (1-4), pp. 213-230
Wilson, M., (1989) Igneous Petrogenesis, , Boston: Kluwer
ISSN:00107999
DOI:10.1007/s00410-009-0426-1