Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile

Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kratzmann, D.J
Otros Autores: Carey, S., Scasso, R.A, Naranjo, J.-A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18825caa a22014057a 4500
001 PAPER-8113
003 AR-BaUEN
005 20230518203755.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77951206981 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CMPEA 
100 1 |a Kratzmann, D.J. 
245 1 0 |a Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile 
260 |c 2010 
270 1 0 |m Kratzmann, D. J.; Graduate School of Oceanography, URI, S. Ferry Rd., Narragansett, RI 02882, United States; email: davidk@gso.uri.edu 
506 |2 openaire  |e Política editorial 
504 |a Andersen, D.J., Lindsley, D.H., Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides (1988) Am Mineral, 73 (7-8), pp. 714-726 
504 |a Andersen, D.J., Lindsley, D.H., Davidson, P.M., QUILF: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz (1993) Comput Geosci, 19, pp. 1333-1350 
504 |a Anderson, A.T., The before-eruption water content of some high-alumina magmas (1973) Bull Volcanol, 37 (4), pp. 530-552 
504 |a Annen, C., Sparks, R.S.J., Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust (2002) Earth Planet Sci Lett, 203 (3-4), pp. 937-955 
504 |a Annen, C., Blundy, J.D., Sparks, R.S.J., The genesis of intermediate and silicic magmas in deep crustal hot zones (2006) J Petrol, 47 (3), pp. 505-539 
504 |a Bacon, C.R., Hirschmann, M.M., Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides (1988) Am Mineral, 73, pp. 57-61 
504 |a Bebout, G.E., Field-based evidence for devolatilization in subduction zones: Implications for Arc magmatism (1991) Science, 251 (4992), pp. 413-416 
504 |a Bitschene, P.R., Fernández, M.I., Volcanology and petrology of fallout ashes from the August 1991 eruption of the Hudson Volcano (Patagonian Andes) (1995) The August 1991 Eruption of the Hudson Volcano (Patagonian Andes); A Thousand Days After, pp. 27-54. , Cuvillier, Gottingen 
504 |a Bitschene, P.R., Fernández, M.I., Arias, N., Arizmendi, A., Griznik, M., Nillni, A., Volcanology and environmental impact of the August 1991 eruption of the Hudson volcano (Patagonian Andes, Chile) (1993) Zbl Geol Palaont Teil IH, 1 (2), pp. 165-177 
504 |a Blundy, J., Cashman, K., Humphreys, M., Magma heating by decompression-driven crystallization beneath andesite volcanoes (2006) Nature, 443 (7107), pp. 76-80 
504 |a Carey, S., Scasso, R.A., Kratzmann, D., Naranjo, J.A., Bande, A., Stratigraphy and Melt Compositions of the 3. 6 and 6. 7 ka Plinian Eruptions of Hudson Volcano, Chile (2005) AGU Fall Meeting 2005, , Posters V41B-1443 San Francisco 
504 |a Carr, M., Igpet Software, p. 2005. , CD-ROM 
504 |a Costa, F., Scaillet, B., Pichavant, M., Petrological and experimental constraints on the pre-eruption conditions of Holocene Dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas (2004) J Petrol, 45 (4), pp. 855-881 
504 |a Cottrell, E., Gardner, J.E., Rutherford, M.J., Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece) (1999) Contrib Mineral Petrol, 135 (4), pp. 315-331 
504 |a Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., Amphibole "sponge" in arc crust? (2007) Geology, 35 (9), pp. 787-790 
504 |a Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., Rutherford, M.J., Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses (1995) Am Mineral, 80, pp. 319-328 
504 |a Dixon, J.E., Stolper, E.M., An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing (1995) J Petrol, 36 (6), pp. 1633-1646 
504 |a Feeley, T.C., Davidson, J.P., Petrology of calc-alkaline lavas at Volcán Ollagüe and the origin of compositional diversity at central Andean stratovolcanoes (1994) J Petrol, 35 (5), pp. 1295-1340 
504 |a Forsythe, R.D., Nelson, E.P., Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao basin, southern Chile (1985) Tectonics, 4, pp. 477-495 
504 |a Gill, J.B., (1981) Orogneic Andesites and Plate Tectonics, p. 390. , New York: Springer 
504 |a Glazner, A.F., Foundering of mafic plutons and density stratification of continental crust (1994) Geology, 22, pp. 435-438 
504 |a Grove, T.L., Baker, M.B., Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends (1984) J Geophys Res, 89 (B5), pp. 3253-3274 
504 |a Grove, T.L., Kinzler, R.J., Petrogenesis of andesites (1986) Ann Rev Earth Planet Sci, 14, pp. 417-454 
504 |a Grove, T.L., Gerlach, D.C., Sando, T.W., Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing (1982) Contrib Mineral Petrol, 80, pp. 160-182 
504 |a Gust, D.A., Perfit, M.R., Phase relations on a high-Mg basalt from the Aleutian island arc: Implications for primary island arc basalts and high-Al basalts (1987) Contrib Mineral Petrol, 97 (1), pp. 7-18 
504 |a Gutiérrez, F., Gioncada, A., Gonzalez-Ferran, O., Lahsen, A., Mazzuoli, R., The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge-trench collision environment (2005) J Volcanol Geoth Res, 145, pp. 207-233 
504 |a Hammer, J.E., Rutherford, M.J., An experimental study of the kinematics of decompression-induced crystallization in silicic melt (2002) J Geophys Res, 107 (B1), pp. 1-24 
504 |a Hawkesworth, C.J., Gallagher, K., Hergot, J.M., McDermott, F., Mantle and slab contributions in arc magmas (1993) Ann Rev Earth Planet Sci, 21, pp. 175-204 
504 |a Ippach, P., (2001) Untersuchung der klimarelevanten Spurengase der Eruption des Cerro Hudson (Sud-Chile) im August 1991, p. 159. , Ph. D. Thesis, Christian Albrechts Universitat zu Keil 
504 |a Irvine, T.N., Baragaar, W.R.A., A guide to the chemical classification of the common volcanic rocks (1971) Can J Earth Sci, 8 (5), pp. 523-548 
504 |a Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., Composition of altered oceanic crust at ODP Sites 801 and 1149 (2003) Geochem Geophys Geosyst, 4 (6), p. 8910. , doi: 10.1029/2002GC000435 
504 |a Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J Geol Soc, 160, pp. 57-70 
504 |a Kilian, R., Ippach, P., López-Escobar, L., Geology, geochemistry and recent activity of the Hudson Volcano, Southern Chile (1993) Second ISAG, , Chile deriva continental geoquímica, Deriva Continental, volcanicas, MORB cretacica, terciaria Oxford 
504 |a Kratzmann, D., Carey, S.N., Scasso, R.A., Naranjo, J.A., Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile (2009) Bull Volcanol, 71, pp. 419-439. , doi:10.1007/s00445-008-0243-x 
504 |a Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali silica diagram (1986) J Petrol, 27, pp. 745-750 
504 |a Le bas, M.J., Le Maitre, R.W., Wooley, A.R., The construction of the total alkali-silica chemical classification of volcanic rocks (1992) Mineral Petrol, 46 (1), pp. 1-22 
504 |a López-Escobar, L., Kilian, R., Kempton, P., Tagiri, M., Petrography and geochemistry of quaternary rocks from the Southern Volcanic zone of the Andes between 41°30′ and 46°00′S, Chile (1993) Rev Geol Chile, 20 (1), pp. 33-55 
504 |a Luhr, J.F., Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón Volcano (1990) J Petrol, 31 (5), pp. 1071-1114 
504 |a Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines (2006) Earth Planet Sci Lett, 243 (3-4), pp. 581-593 
504 |a Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A., Faure, K., Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses (2002) Am Mineral, 87, pp. 813-821 
504 |a Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.-L., Traineau, H., Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar (1999) J Geophys Res, 104 (B12), pp. 29+453-29+470 
504 |a Moore, G., Carmichael, I.S.E., The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth (1998) Contrib Mineral Petrol, 130, pp. 304-319 
504 |a Moore, G., Vennemann, T., Carmichael, I.S.E., An empirical model for the solubility of H2O in magmas to 3 kilobars (1998) Am Mineral, 83, pp. 36-42 
504 |a Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bull Volcanol, 59, pp. 291-306 
504 |a Naranjo, J.A., Moreno, H., Banks, N., La erupción del Volcán Hudson en 1991 (46oS), Región XI, Aisén (1993) Chile Boletin, 44, pp. 1-50 
504 |a Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirata, D., Anma, R., Nagao, K., Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages (2004) Rev Geol Chile, 31 (2), pp. 207-224 
504 |a Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G., Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling (2007) Chem Geol, 241, pp. 177-206 
504 |a Roeder, P.L., Emslie, R.F., Olivine-liquid equilibrium (1970) Contrib Mineral Petrol, 29, pp. 275-289 
504 |a Rudnick, R.L., Fountain, D.M., Nature and composition of the continental crust: A lower crustal perspective (1995) Rev Geophys, 33, pp. 267-309 
504 |a Rutherford, M.J., Sigurdsson, H., Carey, S., Davis, A., The May 18th, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria (1985) J Geophys Res, 90 (B4), pp. 2929-2947 
504 |a Scaillet, B., Evans, B.W., The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the Dacite Magma (1999) J Petrol, 40 (3), pp. 381-411 
504 |a Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile (2005) Lat Am J Sediment Basin Anal, 12 (1), pp. 3-21 
504 |a Scasso, R.A., Corbella, H., Tiberi, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bull Volcanol, 56, pp. 121-132 
504 |a Sisson, T.W., Grove, T.L., Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism (1993) Contrib Mineral Petrol, 113, pp. 143-166 
504 |a Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54oS) derived from the Hudson Volcano (46oS): Evidence for a large explosive eruption (1991) Rev Geol Chile, 18 (2), pp. 139-146 
504 |a Stern, C.R., Active Andean volcanism: Its geologic and tectonic setting (2004) Rev Geol Chile, 31 (2), pp. 161-206 
504 |a Stern, C.R., Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes (2008) Bull Volcanol, 70, pp. 435-454. , doi:10.1007/s00445-007-0148-z 
504 |a Stern, C.R., Futa, K., Muehlenbachs, K., Isotope and trace element data for orogenic andesites from the austral andes (1984) Andean Magmatism: Chemical and Isotopic Constraints, pp. 31-46. , In: Harmon RS, Barreiro BA (eds) Shiva Geology Series 
504 |a Taddeucci, J., Pompolio, M., Scarlato, P., Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): Inferences from glass chemistry and crystal size distribution of ash particles (2004) J Volcanol Geophys Res, 137, pp. 33-54 
504 |a Tatsumi, Y., Formation of the volcanic front in subduction zones (1986) Geophys Res Lett, 13 (8), pp. 717-720 
504 |a Tatsumi, Y., Eggins, S., (1995) Subduction Zone Magmatism, p. 211. , Cambridge: Blackwell Science 
504 |a Thompson, A.B., Water in the Earth's upper mantle (1992) Nature, 358 (6384), pp. 295-302 
504 |a Tormey, D.R., Frey, F.A., López-Escobar, L., Geochemistry of the Active Azufre-Planchon-Peteroa volcanic complex, Chile (35°15′S): Evidence for multiple sources and process in a Cordilleran Arc Magmatic System (1995) J Petrol, 36 (2), pp. 265-298 
504 |a Venezky, D.Y., Rutherford, M.J., Petrology and Fe-Ti oxide reequilibration of the 1991 Mount Unzen mixed magma (1999) J Volcanol Geoth Res, 89 (1-4), pp. 213-230 
504 |a Wilson, M., (1989) Igneous Petrogenesis, , Boston: Kluwer 
520 3 |a Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ̃972°C (±25) and log fO2 -10.33-10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ̃942°C (±26) and log fO2 -10. 68 (±0.2), with ̃2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ̃20 km (e.g., Annen et al. in J Petrol47(3):505-539, 2006)], and the inferred amphibolite facies [̃24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267-309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ̃20-24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite. © Springer-Verlag 2009.  |l eng 
536 |a Detalles de la financiación: National Science Foundation, EAR-0337023 
536 |a Detalles de la financiación: Acknowledgments The authors thank Alejandro Bande for assistance during fieldwork in 2005. Many thanks go to J. D. Devine, C. W. Mandeville, K. A. Kelley, N. A. Hamidzada and M. Lytle for assistance and expertise during data collection. The manuscript benefited from reviews by K. A. Kelley, O. D. Hermes, J. P. Davidson and an anonymous reviewer. This research was supported by NSF grant EAR-0337023 to Carey and Scasso. JAN acknowledges Fond-ecyt Project 1960186 and Sernageomin’s Volcanic Hazard Programme. 
593 |a Graduate School of Oceanography, URI, S. Ferry Rd., Narragansett, RI 02882, United States 
593 |a Dpto. de Cs. Geológicas, FCEN, Univ. de Buenos Aires Cuidad Univ., Pab 2, 1 Piso, 1428 Buenos Aires, Argentina 
593 |a Serv. Nacional Geol. y Minería, Casilla, Santiago 10465, Chile 
690 1 0 |a AMPHIBOLE CRYSTALLIZATION 
690 1 0 |a ANDEAN MARGIN 
690 1 0 |a HUDSON VOLCANO 
690 1 0 |a MAGMA DIFFERENTIATION 
690 1 0 |a SOUTHERN VOLCANIC ZONE 
690 1 0 |a AMPHIBOLE 
690 1 0 |a CHEMICAL COMPOSITION 
690 1 0 |a CRYSTALLIZATION 
690 1 0 |a EXPLOSIVE VOLCANISM 
690 1 0 |a GEOTHERMOMETRY 
690 1 0 |a HIGH PRESSURE 
690 1 0 |a HOLOCENE 
690 1 0 |a ISOTOPIC FRACTIONATION 
690 1 0 |a MELT INCLUSION 
690 1 0 |a STRATOVOLCANO 
690 1 0 |a TRACE ELEMENT 
690 1 0 |a VOLCANIC ERUPTION 
690 1 0 |a AISEN 
690 1 0 |a MOUNT HUDSON 
690 1 0 |a SOUTHERN VOLCANIC ZONE 
651 4 |a CHILE 
700 1 |a Carey, S. 
700 1 |a Scasso, R.A. 
700 1 |a Naranjo, J.-A. 
773 0 |d 2010  |g v. 159  |h pp. 237-264  |k n. 2  |p Contrib. Mineral. Petrol.  |x 00107999  |w (AR-BaUEN)CENRE-206  |t Contributions to Mineralogy and Petrology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951206981&doi=10.1007%2fs00410-009-0426-1&partnerID=40&md5=6c25a3f228eb2c67fb29dd7d08493560  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00410-009-0426-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00107999_v159_n2_p237_Kratzmann  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00107999_v159_n2_p237_Kratzmann  |y Registro en la Biblioteca Digital 
961 |a paper_00107999_v159_n2_p237_Kratzmann  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69066