Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile

The 1991 explosive eruptions of Hudson volcano in southern Chile produced 2.7 km3 (dense rock equivalent) of basalt and trachyandesite tephra during the period August 8-15. The initial basaltic phase (phase I, August 8-9) produced a maximum column height of 12 km above sea level (ASL) and tephra fal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kratzmann, D.J
Otros Autores: Carey, S.N, Fero, J., Scasso, R.A, Naranjo, J.-A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16638caa a22016577a 4500
001 PAPER-8077
003 AR-BaUEN
005 20230518203753.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-75949105383 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Kratzmann, D.J. 
245 1 0 |a Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile 
260 |c 2010 
270 1 0 |m Kratzmann, D.J.; Graduate School of Oceanography, Univ. of Rhode Island, South Ferry Rd, Narragansett, RI 02882, United States; email: davidk@gso.uri.edu 
506 |2 openaire  |e Política editorial 
504 |a Aloisi, M., D'Agostino, M., Dean, K.G., Mostaccio, A., Neri, G., Satellite analysis and PUFF simulation of the eruptive cloud generated by the Mount Etna paroxysm of 22 July 1998 (2002) J. Geophys. Res., 107 (B12), p. 2373 
504 |a Bitschene, P.R., Fernandez, M.I., Volcanology and petrology of fallout ashes from the August 1991 eruption of the Hudson Volcano (Patagonian Andes) (1995) The August 1991 eruption of the Hudson Volcano (Patagonian Andes); a thousand days after, pp. 27-54. , Bitschene P., and Medina J. (Eds), Cuvillier, Gottingen 
504 |a (1991) Washington DC, 16 (7), pp. 2-4. , Bulletin of the Global Volcanism Network Smithsonian Institute 
504 |a Carey, S., Sigurdsson, H., The 1982 eruptions of El Chichón volcano, Mexico (2): Observations and numerical modelling of tephra-fall distribution (1986) Bull. Volcanol., 48 (2-3), pp. 127-141 
504 |a Carey, S., Sigurdsson, H., Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius (1987) Geol. Soc. Am. Bull., 99, pp. 303-314 
504 |a Carey, S., Sparks, R.S.J., Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns (1986) Bull. Volcanol., 48, pp. 109-125 
504 |a Carey, S., Sigurdsson, H., Gardner, J.E., Criswell, W., Variations in column height and magma discharge during the May 18, 1980 Eruption of Mount St. Helens (1990) J. Volcanol. Geotherm. Res., 43, pp. 99-112 
504 |a Constantine, E.K., Bluth, G.J.S., Rose, W.I., TOMS and AVHRR Observations of Drifting Volcanic Clouds From the August 1991 Eruptions of Cerro Hudson (2000) Remote Sensing of Active Volcanism, pp. 45-64. , Mouginis-Mark P., Crisp J.A., and Fink J.H. (Eds), Geophysical Monograph, Washington, DC 
504 |a Doiron, S.D., Bluth, G.J.S., Schneltzer, C.C., Krueger, A.J., Walter, L.S., Transport of the Cerro Hudson SO2 clouds (1991) EOS Trans. AGU, 72 (45), p. 489 
504 |a Fero, J., Carey, S.N., Merrill, J.T., Simulation of the 1980 eruption of Mount St. Helens using the ash-tracking model PUFF (2008) J. Volcanol. Geotherm. Res., 175 (3), pp. 355-366 
504 |a Fero, J., Carey, S.N., Merrill, J.T., Simulating the dispersal of tephra from the 1991 Pinatubo eruption: implications for the formation of widespread ash layers (2009) J. Volcanol. Geotherm. Res., 186 (1-2), pp. 120-131 
504 |a Gutierrez, F., Gioncada, A., Gonzalez-Ferran, O., Lahsen, A., Mazzuoli, R., The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): an example of volcanism associated with ridge-trench collision environment (2005) J. Volcanol. Geotherm. Res., 145, pp. 207-233 
504 |a Haberle, S.G., Lumley, S.H., Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S (1998) J. Volcanol. Geotherm. Res., 84 (3-4), pp. 239-256 
504 |a Harris, D.M., Rose, W.I., Roe, R., Thompson, M.R., Radar observations of ash eruptions (1981) USGS Professional Paper, 1250, pp. 323-334. , The 1980 eruptions of Mount St. Helens, Washington. Lipman P.W., and Mullineaux D.R. (Eds) 
504 |a Holasek, R.E., Rose, W.I., Demonstration of use of digital satellite AVHRR images for eruption cloud mapping (1983) Bull. - N. M. Bur. Geol. Miner. Resour. Rep., 131, p. 133 
504 |a Holasek, R.E., Self, S., Woods, A.W., Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes (1996) J. Geophys. Res., 101 (B12), pp. 27,635-27,655 
504 |a Holasek, R.E., Woods, A.W., Self, S., Experiments on gas-ash separation processes in volcanic umbrella plumes (1996) J. Volcanol. Geotherm. Res., 70 (3-4), pp. 169-181 
504 |a Kalnay, E., Kanamitsu, M., Kistler, R., The NCEP/NCAR 40-year reanalysis project (1996) Bull. Am. Meteorol. Soc., 77 (3), pp. 437-470 
504 |a Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J. Geol. Soc., 160, pp. 57-70 
504 |a Koyaguchi, T., Volume estimation of tephra-fall deposits from the June 15, 1991, eruption of Mount Pinatubo by theoretical and geological methods (1996) Eruptions and Lahars of Mount Pinatubo, Philippines, pp. 583-600. , Fire and Mud. Newhall C.G., and Punongbayan R.S. (Eds), Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle and London 
504 |a Koyaguchi, T., Ohno, M., Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits 2. Application to the Pinatubo 1991 eruption (2001) J. Geophys. Res., 106 (B4), pp. 6513-6533 
504 |a Krueger, A.J., Walter, L.S., Bhartia, P.K., Schnetzler, C.C., Krotkov, N.A., Sprod, I., Bluth, G.J.S., Volcanic sulfur dioxide measurements from the Total Ozone Mapping Spectrometer (TOMS) instruments (1995) J. Geophys. Res., 100, pp. 14057-14076 
504 |a Matson, M., The 1982 El Chichón Volcano eruptions - a satellite perspective (1984) J. Volcanol. Geotherm. Res., 23 (1-2), pp. 1-10 
504 |a Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bull. Volcanol., 59, pp. 291-306 
504 |a Naranjo, J.A., Moreno, H., Banks, N., La erupción del Volcán Hudson en 1991 (46° S), Región XI, Aisén (1993) Chile Boletin, 44, pp. 1-50 
504 |a Oppenheimer, C., Volcanological applications of meteorological satellites (1998) Int. J. Remote Sens., 19 (15), pp. 2829-2864 
504 |a Prata, A.J., Infrared radiative transfer calculations for volcanic ash clouds (1989) Geophys. Res. Lett., 16, pp. 1293-1296 
504 |a Prata, A.J., Observations of volcanic ash clouds in the 10-12 Am window using AVHRR/2 data (1989) Int. J. Remote Sens., 10, pp. 751-761 
504 |a Rodríguez, S.-R., Siebe, C., Komorowski, J.-C., Abrams, M., The Quetzalapa Pumice: a voluminous late Pleistocene rhyolite deposit in the eastern Trans-Mexican Volcanic Belt (2002) J. Volcanol. Geotherm. Res., 113 (1-2), pp. 177-212 
504 |a Rose, W.I., Advancing remote sensing of volcanic clouds (2003) EOS Trans. AGU, 84, p. 351 
504 |a Rose, W.I., Bluth, G.J.S., Ernst, G.G.J., Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary (2000) Philos. Trans. R. Soc. Lond., 358, pp. 1585-1606 
504 |a Sarna-Wojcicki, A.M., Shipley, S., Waitt Jr., R.B., Dzurisin, D., Wood, S.H., Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980 (1981) USGS Professional Paper, 1250, pp. 577-600. , The 1980 eruptions of Mount St. Helens, Washington. Lipman P.W., and Mullineaux D.R. (Eds) 
504 |a Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile (2005) Lat. Am. J. Sedimentol. Basin Anal., 12 (1), pp. 3-21 
504 |a Scasso, R.A., Corbella, H., Tiberi, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bull. Volcanol., 56, pp. 121-132 
504 |a Schoeberl, M.R., Doiron, S.D., Lait, L.R., Newman, P.A., Krueger, A.J., A simulation of the Cerro Hudson SO2 cloud (1993) J. Geophys. Res., 98 (D2), pp. 2949-2955 
504 |a Searcy, C., Dean, K., Stringer, W., PUFF: a high-resolution volcanic ash tracking model (1988) J. Volcanol. Geotherm. Res., 80, pp. 1-16 
504 |a Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., The eruption of Vesuvius in 79 A.D. (1985) Res. Explor., 1, pp. 332-387 
504 |a Simpson, J.J., Hufford, G., Pieri, D., Berg, J., Failures in detecting volcanic ash from a satellite-based technique (2000) Remote Sens. Environ., 72, pp. 191-217 
504 |a Sparks, R.S.J., The dimensions and dynamics of volcanic eruption columns (1986) Bull. Volcanol., 48, pp. 3-15 
504 |a Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54° S) derived from the Hudson Volcano (46° S): evidence for a large explosive eruption (1991) Rev. Geol. Chile, 18 (2), pp. 139-146 
504 |a Suzuki, Y.J., Koyaguchi, T., A three-dimensional numerical simulation of spreading umbrella clouds (2009) J. Geophys. Res., 114, pp. B03209. , 10.1029/2007JB005369 
504 |a Tupper, A., Carn, S., Davey, J., Kamada, Y., Potts, R., Prata, F., Tokuno, M., An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western 'Ring of Fire' (2004) Remote Sens. Environ., 91 (1), pp. 27-46 
504 |a Walker, G.P.L., Plinian eruptions and their deposits (1981) Bull. Volcanol., 44, pp. 223-240 
504 |a Watt, S.F.L., Pyle, D.M., Mather, T., Martin, R.S., Matthews, N.E., Fallout of volcanic ash from the May 2008 explosive eruption of Chaitén, Chile (2009) J. Geophys. Res., 114, pp. B04207. , 10.1029/2008JB006219 
504 |a Webley, P.W., Stunder, B.J.B., Dean, K.G., Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models - a case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska (2009) J. Volcanol. Geotherm. Res., 186 (1-2), pp. 108-119 
504 |a Wessel, P., Smith, W.H.F., Free software helps map and display data (1991) EOS Trans. AGU, 72 (41), pp. 441-448 
504 |a Woods, A.W., The fluid dynamics and thermodynamics of eruption columns (1988) Bull. Volcanol., 50, pp. 169-193 
504 |a Woods, A.W., Self, S., Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height (1992) Nature, 355, pp. 628-630 
520 3 |a The 1991 explosive eruptions of Hudson volcano in southern Chile produced 2.7 km3 (dense rock equivalent) of basalt and trachyandesite tephra during the period August 8-15. The initial basaltic phase (phase I, August 8-9) produced a maximum column height of 12 km above sea level (ASL) and tephra fallout was directed to the north and northeast by the prevailing winds. The paroxysmal trachyandesitic phase (phase II, August 12-15) involved at least three separate events with a maximum ∼ 18-km-high (ASL) eruption column inferred from satellite temperature data. During the initial 24 h of this phase the plume was advected almost directly south, before swinging towards the east as the wind changed direction. The plume was ultimately directed to the southeast and stayed relatively fixed at this bearing for the remainder of the eruption. These temporal variations in the main dispersal direction during the earlier stages of the phase II eruption produced a much wider overall deposit than would be expected from a plume with a relatively fixed transport direction (e.g., latter stages of phase II). The Lagrangian ash tracking model PUFF was utilized to simulate the 1991 explosive eruptions and was able to successfully reproduce the aerial distribution and temporal evolution of the plumes. The optimal agreement between the observed and simulated plumes occurs when the highest concentration of ash particles coincides with the tropopause, a height that is typically lower than the maximum observed column heights for the 1991 eruptions. Gravitational settling of the laterally spreading umbrella region (e.g., Pinatubo 1991) may result in the concentration of ash at this level. This may account for differences in column height estimates between ground- or satellite-based and lithic-based models. The plume associated with the paroxysmal phase (August 12-15, 1991) produced a multilayered deposit composed of alternating layers of fine ash and pumice lapilli. The highly stratified nature of the fall deposit is likely the result of multiple eruptive events coupled with a time varying wind field. A strongly changing wind direction that occurred during the earlier stages of the paroxysmal eruption could have produced variations in the dominant grain size being deposited between fine ash and pumice lapilli during individual eruptive sequences. © 2009 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: National Science Foundation, EAR-0337023 
536 |a Detalles de la financiación: Rochester Academy of Science 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors thank A Bande for assistance during fieldwork, MG Kratzmann for georeferencing support, and JT Merrill for atmospheric expertise. The manuscript benefited from reviews by T Koyaguchi and PW Webley. This research was supported by NSF grant EAR-0337023 to SNC and CONICET grant to RAS. JAN acknowledges Fondecyt Project 1960186 and Sernageomin's Volcanic Hazard Programme. Appendix A 
593 |a Graduate School of Oceanography, Univ. of Rhode Island, South Ferry Rd, Narragansett, RI 02882, United States 
593 |a Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, 1428 Buenos Aires, Argentina 
593 |a Servicio Nacional de Geología y Minería, Casilla, 10465, Santiago, Chile 
690 1 0 |a HUDSON VOLCANO 
690 1 0 |a PUFF SIMULATIONS 
690 1 0 |a SOUTHERN VOLCANIC ZONE 
690 1 0 |a TEPHRA DISPERSAL 
690 1 0 |a TROPOSPHERIC TRANSPORT 
690 1 0 |a WANDERING PLUME 
690 1 0 |a AERIAL DISTRIBUTION 
690 1 0 |a ALTERNATING LAYERS 
690 1 0 |a ASH PARTICLES 
690 1 0 |a COLUMN HEIGHT 
690 1 0 |a CONCENTRATION OF 
690 1 0 |a ERUPTIVE EVENTS 
690 1 0 |a EXPLOSIVE ERUPTION 
690 1 0 |a GRAIN SIZE 
690 1 0 |a GRAVITATIONAL SETTLINGS 
690 1 0 |a HUDSON VOLCANO 
690 1 0 |a LAGRANGIAN 
690 1 0 |a MULTI-LAYERED 
690 1 0 |a PHASE I 
690 1 0 |a PHASE II 
690 1 0 |a PINATUBO 
690 1 0 |a PREVAILING WINDS 
690 1 0 |a TEMPERATURE DATA 
690 1 0 |a TEMPORAL EVOLUTION 
690 1 0 |a TEMPORAL VARIATION 
690 1 0 |a TEPHRA DISPERSAL 
690 1 0 |a TEPHRA FALLOUT 
690 1 0 |a TIME VARYING 
690 1 0 |a TRACKING MODELS 
690 1 0 |a TRANSPORT DIRECTION 
690 1 0 |a VOLCANIC ZONE 
690 1 0 |a WIND DIRECTIONS 
690 1 0 |a WIND FIELD 
690 1 0 |a DEPOSITS 
690 1 0 |a OCEANOGRAPHY 
690 1 0 |a TROPOSPHERE 
690 1 0 |a VOLCANOES 
690 1 0 |a ANDESITE 
690 1 0 |a ATMOSPHERIC TRANSPORT 
690 1 0 |a BASALT 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a DISPERSION 
690 1 0 |a EXPLOSIVE VOLCANISM 
690 1 0 |a MANTLE PLUME 
690 1 0 |a NUMERICAL MODEL 
690 1 0 |a PUMICE 
690 1 0 |a TEPHRA 
690 1 0 |a TROPOPAUSE 
690 1 0 |a VOLCANIC ASH 
690 1 0 |a VOLCANIC ERUPTION 
690 1 0 |a VOLCANICLASTIC DEPOSIT 
690 1 0 |a VOLCANOLOGY 
690 1 0 |a AISEN 
690 1 0 |a MOUNT HUDSON 
690 1 0 |a SOUTHERN VOLCANIC ZONE 
690 1 0 |a PINATUBO 
651 4 |a CHILE 
700 1 |a Carey, S.N. 
700 1 |a Fero, J. 
700 1 |a Scasso, R.A. 
700 1 |a Naranjo, J.-A. 
773 0 |d 2010  |g v. 190  |h pp. 337-352  |k n. 3-4  |p J. Volcanol. Geotherm. Res.  |x 03770273  |w (AR-BaUEN)CENRE-336  |t Journal of Volcanology and Geothermal Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-75949105383&doi=10.1016%2fj.jvolgeores.2009.11.021&partnerID=40&md5=ec9bb88a74867e9423c3e172c730e9de  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jvolgeores.2009.11.021  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03770273_v190_n3-4_p337_Kratzmann  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770273_v190_n3-4_p337_Kratzmann  |y Registro en la Biblioteca Digital 
961 |a paper_03770273_v190_n3-4_p337_Kratzmann  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion