Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes

We determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al. [1]. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region o...

Descripción completa

Detalles Bibliográficos
Autor principal: Bruno, Luciana
Otros Autores: Solovey, G., Ventura, A.C, Dargan, S., Dawson, S.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10809caa a22010577a 4500
001 PAPER-8067
003 AR-BaUEN
005 20241101144106.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77649271066 
024 7 |2 cas  |a calcium ion, 14127-61-8 
030 |a CECAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bruno, Luciana 
245 1 0 |a Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes 
260 |b Elsevier Ltd  |c 2010 
270 1 0 |m Solovey, G.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; email: gsolovey@rockefeller.edu 
504 |a Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P., A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients (2005) Biophys. J., 88, pp. 2403-2421 
504 |a Rose, H.J., Dargan, S., Shuai, J., Parker, I., 'Trigger' events precede calcium puffs in Xenopus oocytes (2006) Biophys. J., 91, pp. 4024-4032 
504 |a Callamaras, N., Parker, I., Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging (1999) J. Gen. Physiol., 113, pp. 199-213 
504 |a Shuai, J., Rose, H.J., Parker, I., The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes (2006) Biophys. J., 91, pp. 4033-4044 
504 |a Swillens, S., Dupont, G., Combettes, L., Champeil, P., From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 13750-13755 
504 |a Sun, X.P., Callamaras, N., Marchant, J.S., Parker, I., A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes (1998) J. Physiol., 509 (PART 1), pp. 67-80 
504 |a Thul, R., Falcke, M., Release currents of IP(3) receptor channel clusters and concentration profiles (2004) Biophys. J., 86, pp. 2660-2673 
504 |a Smith, G.D., Pearson, J.E., Keizer, J., Modeling intracellular calcium waves and sparks (2002) Computational Cell Biology, , Fall C.P., Marland E.S., Wagner J.M., and Tyson J.J. (Eds), Springer, New York 
504 |a Rios, E., Brum, G., Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle (2002) Front. Biosci., 7, pp. d1195-d1211 
504 |a Smith, I.F., Parker, I., Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 6404-6409 
504 |a Smith, I.F., Wiltgen, S.M., Parker, I., Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3 (2009) Cell Calcium, 45, pp. 65-76 
504 |a Demuro, A., Parker, I., Optical patch-clamping: single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels (2005) J. Gen. Physiol., 126, pp. 179-192 
504 |a Blatter, L.A., Huser, J., Rios, E., Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 4176-4181 
504 |a Rios, E., Stern, M.D., Gonzalez, A., Pizarro, G., Shirokova, N., Calcium release flux underlying Ca2+ sparks of frog skeletal muscle (1999) J. Gen. Physiol., 114, pp. 31-48 
504 |a Soeller, C., Cannell, M.B., Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks (2002) Biophys. J., 82, pp. 2396-2414 
504 |a Baylor, S.M., Hollingworth, S., Chandler, W.K., Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog (2002) J. Gen. Physiol., 120, pp. 349-368 
504 |a Ventura, A.C., Bruno, L., Ponce, S., Dawson, Probing a reduced equation for intracellular calcium dynamics (2004) Phys. A: Stat. Mech. Appl., 342, pp. 281-287 
504 |a Ventura, A.C., Bruno, L., Dawson, S.P., Simple data-driven models of intracellular calcium dynamics with predictive power (2006) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 74, p. 011917 
504 |a Parker, I., Callamaras, N., Wier, W.G., A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies (1997) Cell Calcium, 21, pp. 441-452 
504 |a Callamaras, N., Parker, I., Caged inositol 1,4,5-trisphosphate for studying release of Ca2+ from intracellular stores (1998) Methods Enzymol., 291, pp. 380-403 
504 |a Cheng, H., Song, L.S., Shirokova, N., Gonzalez, A., Lakatta, E.G., Rios, E., Stern, M.D., Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method (1999) Biophys. J., 76, pp. 606-617 
504 |a Baran, I., Characterization of local calcium signals in tubular networks of endoplasmic reticulum (2007) Cell Calcium, 42, pp. 245-260 
504 |a Smith, G.D., Dai, L., Miura, R.M., Sherman, A., Asymptotic analysis of buffered calcium diffusion near a point source (2001) SIAM J. Appl. Math., 61, pp. 1816-1838 
504 |a Solovey, G., Fraiman, D., Pando, B., Ponce, S., Dawson, Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+-release channels (2008) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, p. 041915 
504 |a De Young, G.W., Keizer, J., A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 9895-9899 
504 |a Groff, J.R., Smith, G.D., Calcium-dependent inactivation and the dynamics of calcium puffs and sparks (2008) J. Theor. Biol., 253, pp. 483-499 
504 |a Fraiman, D., Pando, B., Dargan, S., Parker, I., Dawson, S.P., Analysis of puff dynamics in oocytes: interdependence of puff amplitude and interpuff interval (2006) Biophys. J., 90, pp. 3897-3907 
504 |a Allbritton, N.L., Meyer, T., Stryer, L., Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate (1992) Science, 258, pp. 1812-1815 
504 |a Conover, W.J., (1999) Practical Nonparametric Statistics, , Wiley, New York 
504 |a Rios, E., Shirokova, N., Kirsch, W.G., Pizarro, G., Stern, M.D., Cheng, H., Gonzalez, A., A preferred amplitude of calcium sparks in skeletal muscle (2001) Biophys. J., 80, pp. 169-183 
504 |a Izu, L.T., Wier, W.G., Balke, C.W., Theoretical analysis of the Ca2+ spark amplitude distribution (1998) Biophys. J., 75, pp. 1144-1162 
504 |a Falcke, M., On the role of stochastic channel behavior in intracellular Ca2+ dynamics (2003) Biophys. J., 84, pp. 42-56 
504 |a Shuai, J.W., Jung, P., Stochastic properties of Ca(2+) release of inositol 1,4,5-trisphosphate receptor clusters (2002) Biophys. J., 83, pp. 87-97 
504 |a Shuai, J., Parker, I., Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution (2005) Cell Calcium, 37, pp. 283-299 
506 |2 openaire  |e Política editorial 
520 3 |a We determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al. [1]. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region of width ∼450 nm, that the release duration is peaked around 18 ms and that the underlying Ca2+ currents range between 0.12 and 0.95 pA. All these parameters are independent of IP3 concentration. We explore what distributions of channels that open during a puff, Np, and what relations between current and number of open channels, I(Np), are compatible with our findings and with the distribution of puff-to-trigger amplitude ratio reported in Rose et al. [2]. To this end, we use simple "mean field" models in which all channels open and close simultaneously. We find that the variability among clusters plays an important role in shaping the observed puff amplitude distribution and that a model for which I(Np) ∼ Np for small Np and I (Np) ∼ Np 1 / α (α > 1) for large Np, provides the best agreement. Simulations of more detailed models in which channels open and close stochastically show that this nonlinear behavior can be attributed to the limited time resolution of the observations and to the averaging procedure that is implicit in the mean-field models. These conclusions are also compatible with observations of ∼400 puffs obtained using the dye Oregon green. © 2009 Elsevier Ltd. All rights reserved.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina 
593 |a Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, United States 
593 |a Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4550, United States 
593 |a CONICET, Argentina 
690 1 0 |a BACKWARD METHODS 
690 1 0 |a CALCIUM FLUXES 
690 1 0 |a CONFOCAL MICROSCOPY 
690 1 0 |a IP3RS 
690 1 0 |a PUFFS 
690 1 0 |a XENOPUS LAEVIS 
690 1 0 |a CALCIUM ION 
690 1 0 |a DYE 
690 1 0 |a INOSITOL 1,4,5 TRISPHOSPHATE RECEPTOR 
690 1 0 |a ALGORITHM 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CALCIUM CURRENT 
690 1 0 |a CALCIUM TRANSPORT 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a NONHUMAN 
690 1 0 |a OOCYTE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SIMULATION 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a XENOPUS LAEVIS 
690 1 0 |a NEPTUNIA 
690 1 0 |a XENOPUS LAEVIS 
700 1 |a Solovey, G. 
700 1 |a Ventura, A.C. 
700 1 |a Dargan, S. 
700 1 |a Dawson, S.P. 
773 0 |d Elsevier Ltd, 2010  |g v. 47  |h pp. 273-286  |k n. 3  |p Cell Calcium  |x 01434160  |w (AR-BaUEN)CENRE-4124  |t Cell Calcium 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77649271066&doi=10.1016%2fj.ceca.2009.12.012&partnerID=40&md5=3c41710ca6097da270f214d7f0c905a6  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ceca.2009.12.012  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01434160_v47_n3_p273_Bruno  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01434160_v47_n3_p273_Bruno  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_01434160_v47_n3_p273_Bruno  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion