Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex

Exopolysaccharide (EPS) production by Ganoderma lucidum in response to different culture conditions was studied. Cellulose and glucose, in defined media, resulted in the more efficient enhancers of EPS production among the carbon sources tested. In natural media cultures containing glucose and malt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Papinutti, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2010
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13286caa a22016577a 4500
001 PAPER-8050
003 AR-BaUEN
005 20230518203751.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77958169827 
024 7 |2 cas  |a carbon, 7440-44-0; cellulose, 61991-22-8, 68073-05-2, 9004-34-6; glucose, 50-99-7, 84778-64-3; macrogol, 25322-68-3; nitrogen, 7727-37-9; water, 7732-18-5; Carbon, 7440-44-0; Culture Media; Glucose, 50-99-7; Polyethylene Glycols; Polysaccharides; Water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BIRTE 
100 1 |a Papinutti, L. 
245 1 0 |a Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex 
260 |b Elsevier Ltd  |c 2010 
270 1 0 |m Papinutti, L.; Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: leandru@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bae, J.T., Sim, J.S., Lee, B.C., Pyo, H.B., Choe, T.B., Yun, J.W., Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts (2005) FEMS Microbiol. Lett., 251, pp. 347-354 
504 |a Chen, W., Zhao, Z., Chen, S.-F., Li, Y.-Q., Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro (2008) Bioresour. Technol., 99, pp. 3187-3194 
504 |a Doehlert, D.H., Uniform shell designs (1970) Appl. Stat., 19, pp. 231-239 
504 |a Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugar and related substances (1945) Anal. Chem., 28, pp. 350-356 
504 |a Gutiérrez, A., Prieto, A., Martínez, A.T., Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus (1996) Carbohydr. Res., 281, pp. 143-154 
504 |a Hseu, R.-S., Wang, H.-H., Wang, H.-F., Moncalvo, J.-M., Differentiation and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis of internal transcribed Spacer Sequences (1996) Appl. Environ. Microbiol., 62, pp. 1354-1363 
504 |a Hsieh, C., Tseng, M.H., Liu, C.J., Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients (2006) Enzyme Microb. Technol., 38, pp. 109-117 
504 |a Jong, S.C., Birmingham, J.M., Medicinal benefits of the mushroom Ganoderma (1992) Adv. Appl. Microbiol., 37, pp. 101-134 
504 |a Kim, H.O., Lim, J.-M., Joo, J.H., Kim, S.W., Hwang, H.J., Choi, J.W., Yun, J.W., Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea (2005) Bioresour. Technol., 96, pp. 1175-1182 
504 |a Kim, H.M., Park, M.K., Yun, J.W., Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum (2006) Appl. Biochem. Biotechnol., 134, pp. 249-262 
504 |a Krisman, C.R., A method for the colorimetric estimation of glycogen with iodine (1962) Anal. Biochem., 4, pp. 17-23 
504 |a Lee, K.M., Lee, S.Y., Lee, H.Y., Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an airlift fermentor (1999) J. Biosci. Bioeng., 88, pp. 646-650 
504 |a Lee, W.Y., Park, Y., Ahn, J.K., Ka, K.H., Park, S.Y., Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum (2007) Enzyme Microb. Technol., 40, pp. 249-254 
504 |a Liang, J., Melican, D., Cafro, L., Palace, G., Fisette, R., Armstrong, R., Patchen, M.L., Enhanced clearance of a multiple antibiotic resistance Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity (1998) Int. J. Immunopharmacol., 20, pp. 595-614 
504 |a Lim, J.-M., Yun, J.-W., Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG-1 (2006) Process Biochem, 41, pp. 1620-1626 
504 |a Lin, E.-S., Sung, S.-C., Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture (2006) Int. J. Food Microbiol., 108, pp. 182-187 
504 |a Lin, Y., Zhang, Z., Thibault, J., Aureobasidium pullulans batch cultivations based on a factorial design for improving the production and molecular weight of exopolysaccharides (2007) Process Biochem, 42, pp. 820-827 
504 |a Maziero, R., Bononi, V.L., Adami, A., Cavazzoni, V., Exopolysaccharide and biomass production in submerged culture by edible mushrooms (1995) Proceedings of the 14th International Congress on the Science and Cultivation of Edible Fungi, pp. 887-891 
504 |a Money, N.P., Osmotic pressure of aqueous polyethylene glycols. Relationship between weight and vapour pressure deficit (1989) Plant Physiol, 91, pp. 766-769 
504 |a Pohkrel, C.P., Ohga, S., Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes (2007) Food Chem, 107, pp. 641-646 
504 |a Ruel, K., Joseleau, J.P., Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium (1991) Appl. Environ. Microbiol., 57, pp. 374-384 
504 |a Russell, R., Paterson, M., Ganoderma - a therapeutic fungal biofactory (2006) Phytochemistry, 67, pp. 1985-2001 
504 |a Schnider-Keel, U., LejbØlle, K.B., Baehler, E., Haas, D., Keel, C., The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 (2001) Appl. Environ. Microbiol., 67, pp. 5683-5693 
504 |a Selbmann, L., Stingele, S., Petruccioli, M., Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina (2003) Antonie Van Leeuwenhoek, 84, pp. 135-145 
504 |a Shih, I.-L., Chou, B.-W., Chen, C.-C., Wu, J.-Y., Hsieh, C., Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa (2008) Bioresour. Technol., 99, pp. 785-793 
504 |a Simon, L., Bouchet, B., Bremond, K., Gallant, D.J., Bouchonneau, M., Studies on pullulan extracellular production and glycogen intracellular content in Aureobasidium pullulans (1998) Can. J. Microbiol., 44, pp. 1193-1199 
504 |a Sone, Y., Okuda, R., Wada, N., Kishida, E., Misaki, A., Structure and antitumor activities of the polysaccharide isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum (1985) Agric. Biol. Chem., 49, pp. 2641-2653 
504 |a Sutherland, I.W., Extracellular polysaccharides (1996) Biotechnology, 6, pp. 615-657. , Rhem, H. J., Reed, G. (Eds.), VCH, Weinheim 
504 |a Tang, Y.J., Zhong, J.J., Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharides and ganoderic acid (2002) Enzyme Microb. Technol., 31, pp. 20-28 
504 |a Tzianabos, A.O., Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function (2000) Clin. Microbiol. Rev., 13, pp. 523-533 
504 |a Vesentini, D., Dickinson, D.J., Murphy, R.J., The production of extracellular mucilaginous material (ECMM) in two wood-rotting basidiomycetes is affected by growth conditions (2005) Mycologia, 97, pp. 1163-1170 
504 |a Vesentini, D., Dickinson, D.J., Murphy, R.J., The protective role of the extracellular mucilaginous material (ECMM) from two wood-rotting basidiomycetes against copper toxicity (2007) Int. Biodet. Biodegrad., 60, pp. 1-7 
504 |a Wakshull, E., Brunke-Reese, D., Lindermuth, J., Fisette, L., Nathans, R.S., Crowley, J.J., Tufts, J.C., Adams, D.S., PGG-glucan, a soluble β-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid β-(1,3)-glucan receptor (1999) Immunopharmacology, 41, pp. 89-107 
504 |a Zou, X., Sun, M., Guo, X., Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium (2006) World J. Microbiol. Biotechnol., 22, pp. 1129-1133 
520 3 |a Exopolysaccharide (EPS) production by Ganoderma lucidum in response to different culture conditions was studied. Cellulose and glucose, in defined media, resulted in the more efficient enhancers of EPS production among the carbon sources tested. In natural media cultures containing glucose and malt extract exhibited a marked increase (up to 29-fold) respect to defined media. Subsequently, high malt extract and glucose concentrations were tested. G. lucidum produced two fractions of EPS, water-soluble and water-insoluble under these culture conditions. The maximum value (15 g L-1) was reached at 21 days in the medium containing 60 g L-1 malt extract and 40 g L-1 glucose. The incomplete utilization of reducing sugars by the fungus in these media suggested that not only did high malt extract and glucose concentrations play a role in EPS production but also the water activity might be involved. A factorial uniform experimental design to test the effect of malt extract, polyethylene glycol (PEG, as water activity depressor), and initial pH on specific EPS production was applied. G. lucidum showed to be a more efficient specific EPS (mg EPS per g mycelium) producer at pH 3.5 in cultures containing the highest PEG and malt extract concentrations. © 2009 Elsevier Ltd.  |l eng 
593 |a Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a DOEHLERT FACTORIAL DESIGN 
690 1 0 |a EXOPOLYSACCHARIDE 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a WATER ACTIVITY 
690 1 0 |a ENZYMES 
690 1 0 |a EXTRACTION 
690 1 0 |a GLUCOSE 
690 1 0 |a METABOLITES 
690 1 0 |a PH EFFECTS 
690 1 0 |a CULTURE CONDITIONS 
690 1 0 |a EXOPOLYSACCHARIDES 
690 1 0 |a FACTORIAL DESIGN 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a GLUCOSE CONCENTRATION 
690 1 0 |a REDUCING SUGARS 
690 1 0 |a WATER ACTIVITY 
690 1 0 |a WATER POTENTIAL 
690 1 0 |a PRODUCED WATER 
690 1 0 |a CELLULOSE 
690 1 0 |a EXOPOLYSACCHARIDE 
690 1 0 |a GLUCOSE 
690 1 0 |a MACROGOL 
690 1 0 |a NITROGEN 
690 1 0 |a GLUCOSE 
690 1 0 |a MACROGOL DERIVATIVE 
690 1 0 |a POLYSACCHARIDE 
690 1 0 |a WATER 
690 1 0 |a BIOLOGICAL PRODUCTION 
690 1 0 |a EXOPOLYMER 
690 1 0 |a EXPERIMENTAL DESIGN 
690 1 0 |a FACTOR ANALYSIS 
690 1 0 |a GLUCOSE 
690 1 0 |a MUSHROOM 
690 1 0 |a NUTRIENT USE 
690 1 0 |a PLANT EXTRACT 
690 1 0 |a PLANT WATER RELATIONS 
690 1 0 |a POLYSACCHARIDE 
690 1 0 |a ARTICLE 
690 1 0 |a CARBON SOURCE 
690 1 0 |a CULTURE MEDIUM 
690 1 0 |a FUNGAL BIOMASS 
690 1 0 |a FUNGAL STRAIN 
690 1 0 |a FUNGUS CULTURE 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a MALT 
690 1 0 |a MYCELIUM 
690 1 0 |a NONHUMAN 
690 1 0 |a NUTRIENT 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SOIL WATER POTENTIAL 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a CHEMISTRY 
690 1 0 |a FUNGUS 
690 1 0 |a METABOLISM 
690 1 0 |a METHODOLOGY 
690 1 0 |a REGRESSION ANALYSIS 
690 1 0 |a TIME 
690 1 0 |a WOOD 
690 1 0 |a FUNGI 
690 1 0 |a GANODERMA LUCIDUM 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a CULTURE MEDIA 
690 1 0 |a FUNGI 
690 1 0 |a GLUCOSE 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a POLYETHYLENE GLYCOLS 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a REGRESSION ANALYSIS 
690 1 0 |a REISHI 
690 1 0 |a TIME FACTORS 
690 1 0 |a WATER 
690 1 0 |a WOOD 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a CARBON 
773 0 |d Elsevier Ltd, 2010  |g v. 101  |h pp. 1941-1946  |k n. 6  |p Bioresour. Technol.  |x 09608524  |w (AR-BaUEN)CENRE-3996  |t Bioresource Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958169827&doi=10.1016%2fj.biortech.2009.09.076&partnerID=40&md5=eef6a41226d3d2788f73ded04f804141  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.biortech.2009.09.076  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09608524_v101_n6_p1941_Papinutti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09608524_v101_n6_p1941_Papinutti  |y Registro en la Biblioteca Digital 
961 |a paper_09608524_v101_n6_p1941_Papinutti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69003