On the induced gas flow by a trielectrode plasma curtain at atmospheric pressure

A study of the induced flow pattern, in quiescent air, by the trielectrode plasma curtain (TPC) discharge is presented and analyzed in terms of the electrical characteristics of the discharge. The TPC discharge is based on the combination of a dielectric barrier discharge (DBD) with a corona dischar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sosa, R.
Otros Autores: Grondona, Diana Elena, Márquez, Adriana Beatriz, Artana, Guillermo Osvaldo, Kelly, Héctor Juan
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08705caa a22009497a 4500
001 PAPER-7913
003 AR-BaUEN
005 20250805132147.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77952678222 
030 |a ITIAC 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sosa, R. 
245 1 3 |a On the induced gas flow by a trielectrode plasma curtain at atmospheric pressure 
260 |c 2010 
270 1 0 |m Sosa, R.; Fluid Dynamics Laboratory, Faculty of Engineering, Universidad de Buenos Aires (UBA), Buenos Aires C1063ACV, Argentina; email: rsosa@fi.uba.ar 
504 |a Goldman, M., Goldman, A., Sigmond, R.S., The corona discharge, its properties and specific uses (1985) Pure Appl. Chem., 57 (9), pp. 1353-1362 
504 |a Wagner, H.E., Branderburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., The barrier discharge: Basic properties and applications to surface treatment (2003) Vacuum, 71 (3), pp. 417-436. , May 
504 |a Roth, J.R., Rahel, J., Dai, X., Sherman, D.M., The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications (2005) Journal of Physics D: Applied Physics, 38 (4), pp. 555-567. , DOI 10.1088/0022-3727/38/4/007 
504 |a Shakaran, R.M., Giapis, K.P., Maskless etching of silicon using patterned microdischarges (2001) Appl. Phys. Lett., 79 (5), pp. 593-595. , Jul 
504 |a Benedikt, J., Focke, K., Yanguas-Gil, A., Von Keudell, A., Atmospheric pressure microplasma jet as a depositing tool (2006) Appl. Phys. Lett., 89 (25), pp. 2515041-2515043. , Dec 
504 |a Shoenbach, K.H., El-Habachi, A., Shi, W., Ciocca, M., High-pressure hollow cathode discharges (1997) Plasma Sources Sci. Technol., 6 (4), pp. 468-477. , Nov 
504 |a Rahman, A., Yalin, A.P., Surla, V., Stan, O., Hoshimiya, K., Yu, Z., Littlefield, E., Collins, G.J., Absolute UV and VUV emission in the 110-400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air (2004) Plasma Sources Sci. Technol., 13 (3), pp. 537-547. , Aug 
504 |a Gadri, R.B., Roth, J.R., Montie, T.C., Kelly-Winterberg, K., Tsai, P., Helfritch, D.J., Feldman, P., Chen, Z., Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP) (2000) Surf. Coat. Technol., 131 (1-3), pp. 528-541. , Sep 
504 |a Moreau, E., Airflow control by non-thermal plasma actuators (2007) J. Phys. D, Appl. Phys., 40, pp. 605-663 
504 |a Zastawny, H., Sosa, R., Grondona, D., Màrquez, A., Artana, G., Kelly, H., Development of a trielectrode plasma curtain at atmospheric pressure (2008) Appl. Phys. Lett., 93 (3), pp. 0315011-0315013. , Jul 
504 |a Sosa, R., Grondona, D., Màrquez, A., Artana, G., Kelly, H., Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure (2009) J. Phys. D, Appl. Phys., 42 (4), pp. 045-205. , Feb 
504 |a Sosa, R., Kelly, H., Grondona, D., Màrquez, A., Artana, G., Lago, V., Electrical and plasma characteristics of a quasi-steady sliding discharge (2008) J. Phys. D, Appl. Phys., 41 (3), pp. 0352021-0352028. , Feb 
504 |a Zouzou, N., Takashima, K., Moreau, E., Mizuno, A., Touchard, G., Sliding discharge study in axisymmetric configuration (2007) Proc. 28th Int. Conf. Phenom. Ionized Gases, pp. 1007-1010. , in, Prague, Czech Republic 
504 |a Louste, C., Artana, G., Moreau, E., Touchard, G., Sliding discharge in air at atmospheric pressure: Electrical properties (2005) J. Electrostat., 63 (6-10), pp. 615-620. , Jun 
504 |a Sosa, R., Arnaud, E., Memin, E., Artana, G., Study of the flow induced by a sliding discharge (2009) IEEE Trans. Dielectr. Electr. Insul., 16 (2), pp. 305-311. , Apr 
504 |a Manish, Y., (2005) Pitot Tube and Wind Tunnel Studies of the Flow Induced by One Atmosphere Uniform Glow Discharge (OAUGDP) Plasma Actuators Using A Conventional and an Economical High Voltage Power Supply, , M. S. thesis, Dept. Phys., Univ. Tennessee, Knoxville, TN 
504 |a Peek, F.W., (1915) Dielectric Phenomena in High Voltage Engineering, , New York: McGraw-Hill 
504 |a Roth, J.R., Dai, X., Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device (2006) The 44th AIAA Aerospace Science Meeting Exhib., pp. 2006-1203. , presented at, Reno, NV, Paper AIAA 
504 |a Raizer, Y.P., (1991) Gas Discharge Physics, , Berlin, Germany: Springer-Verlag 
504 |a Morrow, R., Lowke, J.J., Streamer propagation in air (1997) J. Phys. D, Appl. Phys., 30 (4), pp. 614-627. , Feb 
506 |2 openaire  |e Política editorial 
520 3 |a A study of the induced flow pattern, in quiescent air, by the trielectrode plasma curtain (TPC) discharge is presented and analyzed in terms of the electrical characteristics of the discharge. The TPC discharge is based on the combination of a dielectric barrier discharge (DBD) with a corona discharge (CD) in a three-electrode system, and basically, it consists of the stretching of a pure DBD by the action of a negative CD generated between the active electrode of the dielectric barrier and a remote third electrode. It was found that the observed flow pattern is mainly controlled by the forces exerted at the vicinities of both exposed electrodes, where the electric field is very high. On the other hand, the net force produced at the interelectrode gap seems to be very small in spite of the large current flowing there, a fact that can be attributed to the relatively low value of the electric field at the streamer channel. © 2006 IEEE.  |l eng 
536 |a Detalles de la financiación: PIP 5378, UBACYT Y-023, UBACYT X-108, UBACYT X-448 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 38070 
536 |a Detalles de la financiación: Paper 2009-EPC-254.R1, presented at the 2009 joint Conference on Electrostatics, Boston, MA, June 16–18, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Electrostatic Processes Committee of the IEEE Industry Applications Society. Manuscript submitted for review July 28, 2009 and released for publication September 15, 2009. First published March 22, 2010; current version published May 19, 2010. This work was supported by the Argentine Government under Grants CONICET PIP 5378, UBACYT X-108, UBACYT X-448, UBACYT Y-023, and ANPCYT PICT 38070. 
593 |a Fluid Dynamics Laboratory, Faculty of Engineering, Universidad de Buenos Aires (UBA), Buenos Aires C1063ACV, Argentina 
593 |a Institute for Plasma Physics (INFIP), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires C1063ACV, Argentina 
690 1 0 |a NONTHERMAL PLASMA 
690 1 0 |a PLASMA DEVICES 
690 1 0 |a SCHLIEREN 
690 1 0 |a STREAMERS 
690 1 0 |a SURFACE DISCHARGE 
690 1 0 |a ACTIVE ELECTRODES 
690 1 0 |a CORONA DISCHARGES 
690 1 0 |a DIELECTRIC BARRIER 
690 1 0 |a DIELECTRIC BARRIER DISCHARGES 
690 1 0 |a ELECTRICAL CHARACTERISTIC 
690 1 0 |a GAS FLOWS 
690 1 0 |a INTERELECTRODE GAPS 
690 1 0 |a LARGE CURRENT 
690 1 0 |a NONTHERMAL PLASMA 
690 1 0 |a STREAMER CHANNEL 
690 1 0 |a THIRD ELECTRODE 
690 1 0 |a THREE ELECTRODE-SYSTEM 
690 1 0 |a ATMOSPHERIC MOVEMENTS 
690 1 0 |a ATMOSPHERIC PRESSURE 
690 1 0 |a DIELECTRIC DEVICES 
690 1 0 |a ELECTRIC CORONA 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a FLOW PATTERNS 
690 1 0 |a PLASMA DEVICES 
690 1 0 |a RUNOFF 
690 1 0 |a SURFACE DISCHARGES 
690 1 0 |a PLASMAS 
700 1 |a Grondona, Diana Elena 
700 1 |a Márquez, Adriana Beatriz 
700 1 |a Artana, Guillermo Osvaldo 
700 1 |a Kelly, Héctor Juan 
773 0 |d 2010  |g v. 46  |h pp. 1132-1137  |k n. 3  |p IEEE Trans Ind Appl  |x 00939994  |w (AR-BaUEN)CENRE-5046  |t IEEE Transactions on Industry Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952678222&doi=10.1109%2fTIA.2010.2045096&partnerID=40&md5=d49fb47a6a372d839ebbe56b7e040318  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/TIA.2010.2045096  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00939994_v46_n3_p1132_Sosa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00939994_v46_n3_p1132_Sosa  |y Registro en la Biblioteca Digital 
961 |a paper_00939994_v46_n3_p1132_Sosa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68866