On the induced gas flow by a trielectrode plasma curtain at atmospheric pressure
A study of the induced flow pattern, in quiescent air, by the trielectrode plasma curtain (TPC) discharge is presented and analyzed in terms of the electrical characteristics of the discharge. The TPC discharge is based on the combination of a dielectric barrier discharge (DBD) with a corona dischar...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08705caa a22009497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7913 | ||
| 003 | AR-BaUEN | ||
| 005 | 20250805132147.0 | ||
| 008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-77952678222 | |
| 030 | |a ITIAC | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Sosa, R. | |
| 245 | 1 | 3 | |a On the induced gas flow by a trielectrode plasma curtain at atmospheric pressure |
| 260 | |c 2010 | ||
| 270 | 1 | 0 | |m Sosa, R.; Fluid Dynamics Laboratory, Faculty of Engineering, Universidad de Buenos Aires (UBA), Buenos Aires C1063ACV, Argentina; email: rsosa@fi.uba.ar |
| 504 | |a Goldman, M., Goldman, A., Sigmond, R.S., The corona discharge, its properties and specific uses (1985) Pure Appl. Chem., 57 (9), pp. 1353-1362 | ||
| 504 | |a Wagner, H.E., Branderburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., The barrier discharge: Basic properties and applications to surface treatment (2003) Vacuum, 71 (3), pp. 417-436. , May | ||
| 504 | |a Roth, J.R., Rahel, J., Dai, X., Sherman, D.M., The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications (2005) Journal of Physics D: Applied Physics, 38 (4), pp. 555-567. , DOI 10.1088/0022-3727/38/4/007 | ||
| 504 | |a Shakaran, R.M., Giapis, K.P., Maskless etching of silicon using patterned microdischarges (2001) Appl. Phys. Lett., 79 (5), pp. 593-595. , Jul | ||
| 504 | |a Benedikt, J., Focke, K., Yanguas-Gil, A., Von Keudell, A., Atmospheric pressure microplasma jet as a depositing tool (2006) Appl. Phys. Lett., 89 (25), pp. 2515041-2515043. , Dec | ||
| 504 | |a Shoenbach, K.H., El-Habachi, A., Shi, W., Ciocca, M., High-pressure hollow cathode discharges (1997) Plasma Sources Sci. Technol., 6 (4), pp. 468-477. , Nov | ||
| 504 | |a Rahman, A., Yalin, A.P., Surla, V., Stan, O., Hoshimiya, K., Yu, Z., Littlefield, E., Collins, G.J., Absolute UV and VUV emission in the 110-400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air (2004) Plasma Sources Sci. Technol., 13 (3), pp. 537-547. , Aug | ||
| 504 | |a Gadri, R.B., Roth, J.R., Montie, T.C., Kelly-Winterberg, K., Tsai, P., Helfritch, D.J., Feldman, P., Chen, Z., Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP) (2000) Surf. Coat. Technol., 131 (1-3), pp. 528-541. , Sep | ||
| 504 | |a Moreau, E., Airflow control by non-thermal plasma actuators (2007) J. Phys. D, Appl. Phys., 40, pp. 605-663 | ||
| 504 | |a Zastawny, H., Sosa, R., Grondona, D., Màrquez, A., Artana, G., Kelly, H., Development of a trielectrode plasma curtain at atmospheric pressure (2008) Appl. Phys. Lett., 93 (3), pp. 0315011-0315013. , Jul | ||
| 504 | |a Sosa, R., Grondona, D., Màrquez, A., Artana, G., Kelly, H., Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure (2009) J. Phys. D, Appl. Phys., 42 (4), pp. 045-205. , Feb | ||
| 504 | |a Sosa, R., Kelly, H., Grondona, D., Màrquez, A., Artana, G., Lago, V., Electrical and plasma characteristics of a quasi-steady sliding discharge (2008) J. Phys. D, Appl. Phys., 41 (3), pp. 0352021-0352028. , Feb | ||
| 504 | |a Zouzou, N., Takashima, K., Moreau, E., Mizuno, A., Touchard, G., Sliding discharge study in axisymmetric configuration (2007) Proc. 28th Int. Conf. Phenom. Ionized Gases, pp. 1007-1010. , in, Prague, Czech Republic | ||
| 504 | |a Louste, C., Artana, G., Moreau, E., Touchard, G., Sliding discharge in air at atmospheric pressure: Electrical properties (2005) J. Electrostat., 63 (6-10), pp. 615-620. , Jun | ||
| 504 | |a Sosa, R., Arnaud, E., Memin, E., Artana, G., Study of the flow induced by a sliding discharge (2009) IEEE Trans. Dielectr. Electr. Insul., 16 (2), pp. 305-311. , Apr | ||
| 504 | |a Manish, Y., (2005) Pitot Tube and Wind Tunnel Studies of the Flow Induced by One Atmosphere Uniform Glow Discharge (OAUGDP) Plasma Actuators Using A Conventional and an Economical High Voltage Power Supply, , M. S. thesis, Dept. Phys., Univ. Tennessee, Knoxville, TN | ||
| 504 | |a Peek, F.W., (1915) Dielectric Phenomena in High Voltage Engineering, , New York: McGraw-Hill | ||
| 504 | |a Roth, J.R., Dai, X., Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device (2006) The 44th AIAA Aerospace Science Meeting Exhib., pp. 2006-1203. , presented at, Reno, NV, Paper AIAA | ||
| 504 | |a Raizer, Y.P., (1991) Gas Discharge Physics, , Berlin, Germany: Springer-Verlag | ||
| 504 | |a Morrow, R., Lowke, J.J., Streamer propagation in air (1997) J. Phys. D, Appl. Phys., 30 (4), pp. 614-627. , Feb | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a A study of the induced flow pattern, in quiescent air, by the trielectrode plasma curtain (TPC) discharge is presented and analyzed in terms of the electrical characteristics of the discharge. The TPC discharge is based on the combination of a dielectric barrier discharge (DBD) with a corona discharge (CD) in a three-electrode system, and basically, it consists of the stretching of a pure DBD by the action of a negative CD generated between the active electrode of the dielectric barrier and a remote third electrode. It was found that the observed flow pattern is mainly controlled by the forces exerted at the vicinities of both exposed electrodes, where the electric field is very high. On the other hand, the net force produced at the interelectrode gap seems to be very small in spite of the large current flowing there, a fact that can be attributed to the relatively low value of the electric field at the streamer channel. © 2006 IEEE. |l eng | |
| 536 | |a Detalles de la financiación: PIP 5378, UBACYT Y-023, UBACYT X-108, UBACYT X-448 | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 38070 | ||
| 536 | |a Detalles de la financiación: Paper 2009-EPC-254.R1, presented at the 2009 joint Conference on Electrostatics, Boston, MA, June 16–18, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Electrostatic Processes Committee of the IEEE Industry Applications Society. Manuscript submitted for review July 28, 2009 and released for publication September 15, 2009. First published March 22, 2010; current version published May 19, 2010. This work was supported by the Argentine Government under Grants CONICET PIP 5378, UBACYT X-108, UBACYT X-448, UBACYT Y-023, and ANPCYT PICT 38070. | ||
| 593 | |a Fluid Dynamics Laboratory, Faculty of Engineering, Universidad de Buenos Aires (UBA), Buenos Aires C1063ACV, Argentina | ||
| 593 | |a Institute for Plasma Physics (INFIP), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires C1063ACV, Argentina | ||
| 690 | 1 | 0 | |a NONTHERMAL PLASMA |
| 690 | 1 | 0 | |a PLASMA DEVICES |
| 690 | 1 | 0 | |a SCHLIEREN |
| 690 | 1 | 0 | |a STREAMERS |
| 690 | 1 | 0 | |a SURFACE DISCHARGE |
| 690 | 1 | 0 | |a ACTIVE ELECTRODES |
| 690 | 1 | 0 | |a CORONA DISCHARGES |
| 690 | 1 | 0 | |a DIELECTRIC BARRIER |
| 690 | 1 | 0 | |a DIELECTRIC BARRIER DISCHARGES |
| 690 | 1 | 0 | |a ELECTRICAL CHARACTERISTIC |
| 690 | 1 | 0 | |a GAS FLOWS |
| 690 | 1 | 0 | |a INTERELECTRODE GAPS |
| 690 | 1 | 0 | |a LARGE CURRENT |
| 690 | 1 | 0 | |a NONTHERMAL PLASMA |
| 690 | 1 | 0 | |a STREAMER CHANNEL |
| 690 | 1 | 0 | |a THIRD ELECTRODE |
| 690 | 1 | 0 | |a THREE ELECTRODE-SYSTEM |
| 690 | 1 | 0 | |a ATMOSPHERIC MOVEMENTS |
| 690 | 1 | 0 | |a ATMOSPHERIC PRESSURE |
| 690 | 1 | 0 | |a DIELECTRIC DEVICES |
| 690 | 1 | 0 | |a ELECTRIC CORONA |
| 690 | 1 | 0 | |a ELECTRIC FIELDS |
| 690 | 1 | 0 | |a FLOW PATTERNS |
| 690 | 1 | 0 | |a PLASMA DEVICES |
| 690 | 1 | 0 | |a RUNOFF |
| 690 | 1 | 0 | |a SURFACE DISCHARGES |
| 690 | 1 | 0 | |a PLASMAS |
| 700 | 1 | |a Grondona, Diana Elena | |
| 700 | 1 | |a Márquez, Adriana Beatriz | |
| 700 | 1 | |a Artana, Guillermo Osvaldo | |
| 700 | 1 | |a Kelly, Héctor Juan | |
| 773 | 0 | |d 2010 |g v. 46 |h pp. 1132-1137 |k n. 3 |p IEEE Trans Ind Appl |x 00939994 |w (AR-BaUEN)CENRE-5046 |t IEEE Transactions on Industry Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952678222&doi=10.1109%2fTIA.2010.2045096&partnerID=40&md5=d49fb47a6a372d839ebbe56b7e040318 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1109/TIA.2010.2045096 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00939994_v46_n3_p1132_Sosa |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00939994_v46_n3_p1132_Sosa |y Registro en la Biblioteca Digital |
| 961 | |a paper_00939994_v46_n3_p1132_Sosa |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 68866 | ||