Application of high-intensity ultrasounds to control the size of whey proteins particles

In this paper, we reported a new method to prepare whey protein microparticles via high-intensity ultrasound disruption. Particles morphology was characterized by confocal microscopy, and their size and distribution were analyzed by light scattering technique. Starting whey protein isolate (WPI) exh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gordon, L.
Otros Autores: Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09299caa a22007457a 4500
001 PAPER-7898
003 AR-BaUEN
005 20230518203740.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77954537089 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gordon, L. 
245 1 0 |a Application of high-intensity ultrasounds to control the size of whey proteins particles 
260 |c 2010 
270 1 0 |m Pilosof, A. M. R.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: apilosof@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Mc Clements, J., Advances in the application of ultrasound in food analysis and processing (1995) Trends Food Sci. Technol., 6, pp. 293-299 
504 |a Knorr, D., Zenker, M., Heinz, V., Lee, D.-U., Application and potential of ultrasonics in food processing (2004) Trends Food Sci. Technol., 15, pp. 261-266 
504 |a Lu, Y.F., Riyanto, N., Weavers, L.K., Sonolysis of synthetic sediment particles: Particle characteristics affecting particle dissolution and size reduction (2002) Ultrason. Sonochem., 9, pp. 181-188 
504 |a Klíma, J., Frias-Ferrer, A., González-García, J., Ludvík, J., Saéz, V., Iniesta, J., Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results (2006) Ultrason. Sonochem., 14, pp. 19-28 
504 |a Horst, C., Chen, Y.S., Kunz, U., Hoffmann, U., Design, modeling and performance of a novel sonochemical reactor for heterogeneous reactions (1996) Chem. Eng. Sci., 51, pp. 1837-1846 
504 |a Leighton, T.G., Bubble population phenomena in acoustic cavitation (1995) Ultrason. Sonochem., 2 (2), pp. S123-S136 
504 |a Villamiel, M., Jong, P., Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins and native enzymes of milk (2000) J. Agric. Food Chem., 48, pp. 472-478 
504 |a Priego-Capote, F., Luque dr Castro, M.D., Analytical uses of ultrasound I. Sample preparation (2004) Trends in Analytical Chemistry, 23 (9), pp. 644-653 
504 |a Hena, S., Das, H., Modeling of particle size distribution of sonicated coconut milk emulsion: Effect of emulsifiers and sonication time (2006) Food Res. Int., 39, pp. 606-611 
504 |a Freitas, S., Rudolf, B., Hans, P.M., Gander, B., Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction (2005) Eur. J. Pharm. Biopharm., 61, pp. 181-187 
504 |a Pereira-Lachataignerais, J., Pons, R., Panizza, P., Courbin, L., Rouch, J., López, O., Study and formation of vesicle systems with low polydispersity index by ultrasound method (2006) Chem. Phys. Lipids., 140, pp. 88-97 
504 |a Lorimer, J.P., Mason, T.J., Cuthbert, T.C., Brookfield, E.A., Effect of ultrasound on degradation of aqueous native dextran (1995) Ultrason. Sonochem., 2, pp. s55-s57 
504 |a Chen, R.H., Chang, J.R., Shyur, J.S., Effect of ultrasounds conditions and storages in acidic solutions on changes in molecular weight and polydispersity of treated chitosan (1997) Carbohydr. Res., 299, pp. 287-294 
504 |a Kardos, N., Luche, J., Sonichemistry in carbohydrate compounds (2001) Carbohydr. Res., 332, pp. 115-131 
504 |a Liu, H., Bao, J., Du, Y., Zhou, X., Kennedy, J.F., Effect of ultrasonic treatment on the biochemphysical properties of chitosan (2006) Carbohydr. Polym., 64, pp. 553-559 
504 |a Iida, Y., Tuziuti, T., Yasui, K., Towata, A., Kozuka, T., Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization (2008) Innovative Food Science & Emerging Technologies, 9, pp. 140-146 
504 |a Camino, N., Pérez, O.E., Pilosof, A.M.R., Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound (2009) Food Hydrocoll., 23, pp. 1089-1095 
504 |a Xiaodong, Z., Qunfang, L., Gance, D., Faxiangb, J., Ultrasonic degradation of polysilane polymers (1998) Polym. Degrad. Stab., 60, pp. 409-413 
504 |a Gülseren, I., Güzey, D., Bruce, B.D., Weiss, J., Structural and functional changes in ultrasonicated bovine serum albumin solutions (2007) Ultrason. Sonochem., 14, pp. 173-183 
504 |a Li, Z., Tao, X., Cheng, Y., Wu, Z., Zhang, Z., Dang, H., A facile way for preparing tin nanoparticles from bulk via ultrasound dispersion (2007) Ultrason. Sonochem., 14, pp. 89-92 
504 |a Guo, Z., Jones, A.G., Li, N., Germana, S., High-speed observation of the effect of ultrasound on liquid mixing and agglomerate crystal breakage processes (2007) Powder Technol., 171, pp. 146-153 
504 |a Franco, F., Cecila, J.A., Pérez-Maqueda, L.A., Pérez-Rodriguez, J.L., Gomes, C.S.F., Particle-size reduction of dickite by ultrasound treatments: Effect on the structure, shape and particle-size distribution (2007) Appl. Clay Sci., 35, pp. 119-127 
504 |a Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocoll., 15, pp. 533-542 
504 |a Leroux, J., Lagendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectins (2003) Food Hydrocoll., 17, pp. 455-462 
504 |a Jambrak, A.R., Lelas, V., Mason, T.J., Kresic, G., Badanjak, M., Physical properties of ultrasound treated soy proteins (2009) J. Food Eng., 93, pp. 386-393 
504 |a Militello, V., Cassarino, C., Emanuele, A., Giostra, A., Pullara, F., Leone, M., Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering (2004) Biophys. Chem., 107, pp. 175-187 
504 |a Boulet, M., Britten, M., Lamarche, F., Aggregation of some food proteins in aqueus dispersions: Effect of concentration, pH and ionic strength (2000) Food Hydrocoll., 14, pp. 135-144 
504 |a Ebringerová, A., Hromádková, Z., The effect of ultrasound on the structure and properties of the water soluble corn hull heteroxylan (1997) Ultrason. Sonochem., 4, pp. 305-309 
520 3 |a In this paper, we reported a new method to prepare whey protein microparticles via high-intensity ultrasound disruption. Particles morphology was characterized by confocal microscopy, and their size and distribution were analyzed by light scattering technique. Starting whey protein isolate (WPI) exhibited changes in size and distribution according to its concentration. For WPI, 7.5% (w/w) mean size was 0.7 μm, and upon sonication at ambient temperature, the size was reduced up to 0.2 μm showing the particles a rounded morphology. Sonication at room temperature of gelled WPI led to particles with sizes between 0.1 and 10 μm which had a tendency to flocculate. When WPI was submitted to sonication under heating at protein denaturation temperature, different effects were observed according to protein concentration. The particle size was reduced for the lowest WPI concentration (7.5 wt.%), did not change at 9 wt.%, but strongly increased at 12 wt.%, in comparison with the untreated sample. WPI particles of desired size in the micron range may be obtained either by sonication of gelled WPI or by sonication under heating at denaturation temperature by controlling processing variables. © 2010 Springer Science+Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: This research was supported by Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica, and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a FAT MIMETIC 
690 1 0 |a MICROPARTICLES 
690 1 0 |a PROTEIN AGGREGATES 
690 1 0 |a ULTRASOUNDS 
700 1 |a Pilosof, A.M.R. 
773 0 |d 2010  |g v. 5  |h pp. 203-210  |k n. 3  |p Food Biophys.  |x 15571858  |t Food Biophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954537089&doi=10.1007%2fs11483-010-9161-4&partnerID=40&md5=f6c7626bee07100f87dae6744c7aebe1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11483-010-9161-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15571858_v5_n3_p203_Gordon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15571858_v5_n3_p203_Gordon  |y Registro en la Biblioteca Digital 
961 |a paper_15571858_v5_n3_p203_Gordon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68851