Cancellation exponents in helical and non-helical flows
Helicity is a quadratic invariant of the Euler equation in three dimensions. As the energy, when present helicity cascades to smaller scales where it dissipates. However, the role played by helicity in the energy cascade is still unclear. In non-helical flows, the velocity and the vorticity tend to...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08113caa a22009257a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7876 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203739.0 | ||
| 008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-77952425481 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JFLSA | ||
| 100 | 1 | |a Imazio, P.R. | |
| 245 | 1 | 0 | |a Cancellation exponents in helical and non-helical flows |
| 260 | |c 2010 | ||
| 270 | 1 | 0 | |m Imazio, P. R.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina; email: paolaimazio@df.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modelling of turbulent flows and the role of helicity (2008) Phys. Rev. E., 77, p. 046303 | ||
| 504 | |a Borue, V., Orszag, S.A., Spectra in helical three-dimensional homogeneous isotropic turbulence (1997) Phys. Rev. E., 55, pp. 7005-7009 | ||
| 504 | |a Brissaud, A., Frisch, U., Léorat, J., Lesieur, M., Mazure, A., Helicity cascades in fully developed isotropic turbulence (1973) Phys. Fluids, 16, pp. 1366-1367 | ||
| 504 | |a Bruno, R., Carbone, V., Sign singularity of the magnetic helicity from in situ solar wind observations (1997) Astrophys. J., 488, pp. 482-487 | ||
| 504 | |a Chen, Q., Chen, S., Eyink, G., The joint cascade of energy and helicity in three-dimensional turbulence (2003) Phys. Fluids., 15, pp. 361-374 | ||
| 504 | |a Chen, Q., Chen, S., Eyink, G., Holm, D., Intermittency and the joint cascade of energy and helicity (2003) Phys. Rev. Lett., 90, p. 214503 | ||
| 504 | |a Eyink, G., Sreenivasan, K., Onsager and the theory of hydrodinamic turbulence (2006) Rev. Mod. Phys., 78, pp. 87-134 | ||
| 504 | |a Farge, M., Pellegrino, G., Schneider, K., Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets (2001) Phys. Rev. Lett., 87, p. 054501 | ||
| 504 | |a Frisch, U., (1995) Turbulence, , Cambridge University Press | ||
| 504 | |a Gomez, D.O., Mininni, P.D., Understanding turbulence through numerical simulations (2004) Physica A, 342, pp. 69-75 | ||
| 504 | |a Holm, D., Kerr, R., Helicity in the formation of turbulence (2007) Phys. Fluids, 19, p. 025101 | ||
| 504 | |a Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number (1941) Dokl. Acad. Nauk SSSR A, 30, pp. 301-305 | ||
| 504 | |a Kurien, S., The reflection-antisymmetric counterpart of the Kármán- Howarth dynamical equation (2003) Physica D, 175, pp. 167-176 | ||
| 504 | |a Lilly, D., The structure, energetics and propagation of rotating convective storms (1986) J. Atmos. Sci., 43, pp. 126-140 | ||
| 504 | |a Mininni, P., Alexakis, A., Pouquet, A., Large scale flow effects, energy transfer, and self-similarity on turbulence (2006) Phys. Rev. E., 74, p. 016303 | ||
| 504 | |a Moffatt, H.K., The degree of knottedness of tangled vortex lines (1969) J. Fluid Mech., 35, pp. 117-129 | ||
| 504 | |a Moffat, H.K., Cambridge university press (1978) Magnetic Field Generation in Electrically Conducting Fluids | ||
| 504 | |a Moffatt, H.K., Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology (1985) J. Fluid Mech., 159, pp. 359-378 | ||
| 504 | |a Moffatt, H.K., Tsinober, A., Helicity in laminar and turbulent flows (1992) Annu. Rev. Fluid Mech., 24, pp. 281-312 | ||
| 504 | |a Ott, E., Du, Y., Sreenivasan, K., Juneja, A., Suri, A., Sign-singular measures: Fast magnetic dynamos, and high-Reynolds-number fluid turbulence (1992) Phys. Rev. Lett., 69, pp. 2654-2657 | ||
| 504 | |a Pietarila Graham, J., Mininni, P.D., Pouquet, A., Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: Direct numerical simulations and Lagrangian averaged modelling (2005) Phys. Rev. E., 72, pp. 045301R | ||
| 504 | |a Pope, S., (2000) Turbulent Flows, , Cambridge University Press | ||
| 504 | |a Pouquet, A., Frisch, U., Léorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect (1976) J. Fluid Mech., 77, pp. 321-354 | ||
| 504 | |a Sorriso-Valvo, L., Carbone, B., Noullez, A., Politano, H., Pouquet, A., Veltri, P., Analisys of cancellation in two-dimensional magnetohydrodinamic turbulence (2002) Phys. Plasmas, 9, pp. 89-95 | ||
| 504 | |a Vainshtein, S.I., Sreenivasan, K.R., Pierrehumbert, R.T., Kashyap, V., Juneja, A., Scaling exponents for turbulence and other random processes and their relationships with multifractal structure (1994) Phys. Rev. E., 50, pp. 1823-1835 | ||
| 504 | |a Wilkin, L.S., Barenghi, C.F., Shukurov, A., Magnetic structures produced by small-scale dynamos (2007) Phys. Rev. Lett., 99, p. 134501 | ||
| 520 | 3 | |a Helicity is a quadratic invariant of the Euler equation in three dimensions. As the energy, when present helicity cascades to smaller scales where it dissipates. However, the role played by helicity in the energy cascade is still unclear. In non-helical flows, the velocity and the vorticity tend to align locally creating patches with opposite signs of helicity. Also in helical flows helicity changes sign rapidly in space. Not being a positive definite quantity, global studies considering its spectral scaling in the inertial range are inconclusive, except for cases where one sign of helicity is dominant. We use the cancellation exponent to characterize the scaling laws followed by helicity fluctuations in numerical simulations of helical and non-helical turbulent flows, with different forcing functions and spanning a range of Reynolds numbers from ≈ 670 to ≈ 6200. The exponent can be related to the fractal dimension as well as to the first-order helicity scaling exponent. The results are consistent with the geometry of helical structures being filamentary. Further analysis indicates that statistical properties of helicity fluctuations in the simulations do not depend on the global helicity of the flow. © 2010 Cambridge University Press. |l eng | |
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: The authors acknowledge support from Grants No. UBACYT X468/08 and PICT-2007-02211. P. D. Mininni acknowledges support from the Carrera del Investigador Científico of CONICET. | ||
| 593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina | ||
| 593 | |a National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, United States | ||
| 690 | 1 | 0 | |a ENERGY CASCADE |
| 690 | 1 | 0 | |a FIRST-ORDER |
| 690 | 1 | 0 | |a FORCING FUNCTION |
| 690 | 1 | 0 | |a HELICAL FLOWS |
| 690 | 1 | 0 | |a HELICAL STRUCTURES |
| 690 | 1 | 0 | |a HELICITIES |
| 690 | 1 | 0 | |a HELICITY CASCADES |
| 690 | 1 | 0 | |a NUMERICAL SIMULATION |
| 690 | 1 | 0 | |a POSITIVE DEFINITE |
| 690 | 1 | 0 | |a QUADRATIC INVARIANT |
| 690 | 1 | 0 | |a SCALING EXPONENT |
| 690 | 1 | 0 | |a STATISTICAL PROPERTIES |
| 690 | 1 | 0 | |a THREE DIMENSIONS |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a EULER EQUATIONS |
| 690 | 1 | 0 | |a REYNOLDS NUMBER |
| 690 | 1 | 0 | |a FRACTAL DIMENSION |
| 690 | 1 | 0 | |a EULERIAN ANALYSIS |
| 690 | 1 | 0 | |a FLOW VELOCITY |
| 690 | 1 | 0 | |a NUMERICAL MODEL |
| 690 | 1 | 0 | |a REYNOLDS NUMBER |
| 690 | 1 | 0 | |a TURBULENT FLOW |
| 690 | 1 | 0 | |a VORTICITY |
| 700 | 1 | |a Mininni, P.D. | |
| 773 | 0 | |d 2010 |g v. 651 |h pp. 241-250 |p J. Fluid Mech. |x 00221120 |t Journal of Fluid Mechanics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952425481&doi=10.1017%2fS0022112010000819&partnerID=40&md5=f1df8c4a77b80007b7c3b76894b4028e |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1017/S0022112010000819 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00221120_v651_n_p241_Imazio |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221120_v651_n_p241_Imazio |y Registro en la Biblioteca Digital |
| 961 | |a paper_00221120_v651_n_p241_Imazio |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 68829 | ||