Confined Polar Mixtures within Cylindrical Nanocavities

Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodriguez, J.
Otros Autores: Elola, M.D, Laria, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius Rcnt = 0.55 nm, and (16,16) ones, with Rcnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches ∼1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius ∼1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups. © 2010 American Chemical Society.
Bibliografía:Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, p. 15181
Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., (2003) Nano Lett., 3, p. 589
Byl, O., Liu, J.-C., Wang, Y., Yim, W.-L., Johnson, J.K., Johnson Jr., J.Y., (2006) J. Am. Chem. Soc., 128, p. 12090
Jiang, J., Sandler, S.I., Smit, B., (2004) Nano Lett., 4, p. 241
Koone, N., Shao, Y., Zerda, T.W., (1995) J. Phys. Chem., 99, p. 16976
Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K., Teramae, N., (2006) Anal. Sci., 22, p. 1501
Takahashi, R., Sato, S., Sodesawa, T., Ikeda, T., (2003) Phys. Chem. Chem. Phys., 5, p. 2476
Farrer, R.A., Fourkas, J.T., (2003) Acc. Chem. Res., 36, p. 605
Liu, G.Y., Li, Y.Z., Jonas, J., (1989) J. Chem. Phys., 90, p. 5881
Warnock, J., Awschalom, D.D., Shafer, M.W., (1986) Phys. Rev. B, 34, p. 475
Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655
Kalra, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 10175
Martí, J., Gordillo, M.C., (2001) J. Chem. Phys., 114, p. 10486
Martí, J., Gordillo, M.C., (2003) J. Chem. Phys., 119, p. 12540
Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188
Waghe, A., Rasaiah, J.C., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789
Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127
Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357
Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584
Pal, S.K., Peon, J., Zewail, A.H., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1763
Pal, S.K., Zhao, L.A., Zewail, A.H., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 8113
Levinger, N.E., Swafford, L.A., (2009) Annu. Rev. Phys. Chem., 60, p. 385
Lopez, C.F., Nielsen, S.O., M, L.K., Moore, P.B., (2004) J. Phys. Chem. B, 108, p. 6603
Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573
Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. e, 55, p. 1290
Gelb, L.D., Sliwinska-Bartkowiak, M., Gubbins, K.E., Meunier, F., (1998) Fundamentals of Adsorption 6, , Ed.; Elsevier: Paris
Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864
Woywod, D., Schemmel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 124510
Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182
Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764
Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, p. 351
Formisano, F., Teixeira, J., (2000) Eur. Phys. J. e, 1, p. 1
Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916
Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) J. Chem. Phys., 126. , 091103
Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744
Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 14844
Hwang, H., Schatz, G.C., Ratner, M.A., (2006) J. Phys. Chem. B, 110, p. 26448
Yu, Y.M., Chipot, C., Cai, W.S., Shao, X.G., (2006) J. Phys. Chem. B, 110, p. 6372
Yu, Y.M., Cai, W.S., Chipot, C., Sun, T.T., Shao, X.G., (2008) J. Phys. Chem. B, 112, p. 5268
Gulmen, T.S., Thompson, W.H., Fourkas, J.T., Levitz, P., Overney, R., Urbakh, M., (2006) Dynamics in Small Confining Systems VIII, 899. , Eds.; Materials Research Society Symposium Proceedings, Warrendale, PA,; Vol
Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922
Gulmen, T.S., Thompson, W.H., (2009) Langmuir, 25, p. 1103
Brodka, A., Zerda, T.W., (1991) J. Chem. Phys., 95, p. 3710
Furukawa, S., Nishiumi, T., Aoyama, N., Nitta, T., Nakano, M., (2005) J. Chem. Eng. Jpn., 38, p. 999
Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291
Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427
Grande, M.D.C., Alvarez-Juliá, J., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760
Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604
Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323
Castrillon, S.R.-V., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438
Chandler, D., (2005) Nature, 437, p. 640
Chandler, D., (2007) Nature, 445, p. 831
Darve, E., Pohorille, A., (2001) J. Chem. Phys., 115, p. 9169
Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, p. 2904
Rodriguez, J., Semino, R., Laria, D., (2009) J. Phys. Chem. B, 113, p. 1241
Marchi, M., Sterpone, F., Ceccarelli, M., (2002) J. Am. Chem. Soc., 124, p. 6787
Faeder, J., Ladanyi, B.M., (2000) J. Phys. Chem. B, 104, p. 1033
Kalugin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126
Striolo, A., (2006) Nano Lett., 6, p. 633
Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K., (2007) J. Chem. Phys., 126, p. 124704
Alexiadis, A., Kassinos, S., (2008) Mol. Simul., 34, p. 671
Lipari, G., Szabo, A., (1980) Biophys. J., 30, p. 489
Schröder, G., Alexiev, U., Grubmüller, H., (2005) Biophys. J., 89, p. 3757
Kinosita, K., Kawato, S., Ikegami, A., (1981) Biophys. J., 20, p. 289
Kawato, S., Kinosita, K., (1981) Biophys. J., 36, p. 277
Rodriguez, J., Mart, J., Guardia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990
Zang, J., Konduri, S., Nari, S., Sholl, D.S., (2009) ACS Nano, 3, p. 1548
Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faraday Trans., 86, p. 277
Marcus, Y., Migron, Y., (1991) J. Phys. Chem., 95, p. 400
Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596
Bergman, D.L., Laaksonen, A., (1998) Phys. Rev. e, 58, p. 4706
Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744
Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222
Zheng, J., Lennon, E.M., Tsao, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702
ISSN:15206106
DOI:10.1021/jp101836b