Confined Polar Mixtures within Cylindrical Nanocavities
Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carb...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius Rcnt = 0.55 nm, and (16,16) ones, with Rcnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches ∼1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius ∼1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups. © 2010 American Chemical Society. |
|---|---|
| Bibliografía: | Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, p. 15181 Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., (2003) Nano Lett., 3, p. 589 Byl, O., Liu, J.-C., Wang, Y., Yim, W.-L., Johnson, J.K., Johnson Jr., J.Y., (2006) J. Am. Chem. Soc., 128, p. 12090 Jiang, J., Sandler, S.I., Smit, B., (2004) Nano Lett., 4, p. 241 Koone, N., Shao, Y., Zerda, T.W., (1995) J. Phys. Chem., 99, p. 16976 Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K., Teramae, N., (2006) Anal. Sci., 22, p. 1501 Takahashi, R., Sato, S., Sodesawa, T., Ikeda, T., (2003) Phys. Chem. Chem. Phys., 5, p. 2476 Farrer, R.A., Fourkas, J.T., (2003) Acc. Chem. Res., 36, p. 605 Liu, G.Y., Li, Y.Z., Jonas, J., (1989) J. Chem. Phys., 90, p. 5881 Warnock, J., Awschalom, D.D., Shafer, M.W., (1986) Phys. Rev. B, 34, p. 475 Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655 Kalra, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 10175 Martí, J., Gordillo, M.C., (2001) J. Chem. Phys., 114, p. 10486 Martí, J., Gordillo, M.C., (2003) J. Chem. Phys., 119, p. 12540 Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188 Waghe, A., Rasaiah, J.C., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789 Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127 Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357 Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584 Pal, S.K., Peon, J., Zewail, A.H., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1763 Pal, S.K., Zhao, L.A., Zewail, A.H., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 8113 Levinger, N.E., Swafford, L.A., (2009) Annu. Rev. Phys. Chem., 60, p. 385 Lopez, C.F., Nielsen, S.O., M, L.K., Moore, P.B., (2004) J. Phys. Chem. B, 108, p. 6603 Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573 Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. e, 55, p. 1290 Gelb, L.D., Sliwinska-Bartkowiak, M., Gubbins, K.E., Meunier, F., (1998) Fundamentals of Adsorption 6, , Ed.; Elsevier: Paris Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864 Woywod, D., Schemmel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 124510 Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182 Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764 Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, p. 351 Formisano, F., Teixeira, J., (2000) Eur. Phys. J. e, 1, p. 1 Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916 Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) J. Chem. Phys., 126. , 091103 Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744 Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 14844 Hwang, H., Schatz, G.C., Ratner, M.A., (2006) J. Phys. Chem. B, 110, p. 26448 Yu, Y.M., Chipot, C., Cai, W.S., Shao, X.G., (2006) J. Phys. Chem. B, 110, p. 6372 Yu, Y.M., Cai, W.S., Chipot, C., Sun, T.T., Shao, X.G., (2008) J. Phys. Chem. B, 112, p. 5268 Gulmen, T.S., Thompson, W.H., Fourkas, J.T., Levitz, P., Overney, R., Urbakh, M., (2006) Dynamics in Small Confining Systems VIII, 899. , Eds.; Materials Research Society Symposium Proceedings, Warrendale, PA,; Vol Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922 Gulmen, T.S., Thompson, W.H., (2009) Langmuir, 25, p. 1103 Brodka, A., Zerda, T.W., (1991) J. Chem. Phys., 95, p. 3710 Furukawa, S., Nishiumi, T., Aoyama, N., Nitta, T., Nakano, M., (2005) J. Chem. Eng. Jpn., 38, p. 999 Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291 Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427 Grande, M.D.C., Alvarez-Juliá, J., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760 Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604 Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535 Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323 Castrillon, S.R.-V., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438 Chandler, D., (2005) Nature, 437, p. 640 Chandler, D., (2007) Nature, 445, p. 831 Darve, E., Pohorille, A., (2001) J. Chem. Phys., 115, p. 9169 Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, p. 2904 Rodriguez, J., Semino, R., Laria, D., (2009) J. Phys. Chem. B, 113, p. 1241 Marchi, M., Sterpone, F., Ceccarelli, M., (2002) J. Am. Chem. Soc., 124, p. 6787 Faeder, J., Ladanyi, B.M., (2000) J. Phys. Chem. B, 104, p. 1033 Kalugin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126 Striolo, A., (2006) Nano Lett., 6, p. 633 Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K., (2007) J. Chem. Phys., 126, p. 124704 Alexiadis, A., Kassinos, S., (2008) Mol. Simul., 34, p. 671 Lipari, G., Szabo, A., (1980) Biophys. J., 30, p. 489 Schröder, G., Alexiev, U., Grubmüller, H., (2005) Biophys. J., 89, p. 3757 Kinosita, K., Kawato, S., Ikegami, A., (1981) Biophys. J., 20, p. 289 Kawato, S., Kinosita, K., (1981) Biophys. J., 36, p. 277 Rodriguez, J., Mart, J., Guardia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990 Zang, J., Konduri, S., Nari, S., Sholl, D.S., (2009) ACS Nano, 3, p. 1548 Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faraday Trans., 86, p. 277 Marcus, Y., Migron, Y., (1991) J. Phys. Chem., 95, p. 400 Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596 Bergman, D.L., Laaksonen, A., (1998) Phys. Rev. e, 58, p. 4706 Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744 Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222 Zheng, J., Lennon, E.M., Tsao, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702 |
| ISSN: | 15206106 |
| DOI: | 10.1021/jp101836b |