Confined Polar Mixtures within Cylindrical Nanocavities
Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carb...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 12464caa a22016457a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7809 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203735.0 | ||
| 008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-77953439471 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JPCBF | ||
| 100 | 1 | |a Rodriguez, J. | |
| 245 | 1 | 0 | |a Confined Polar Mixtures within Cylindrical Nanocavities |
| 260 | |b American Chemical Society |c 2010 | ||
| 270 | 1 | 0 | |m Laria, D.; Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina; email: dhlaria@cnea.gov.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, p. 15181 | ||
| 504 | |a Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., (2003) Nano Lett., 3, p. 589 | ||
| 504 | |a Byl, O., Liu, J.-C., Wang, Y., Yim, W.-L., Johnson, J.K., Johnson Jr., J.Y., (2006) J. Am. Chem. Soc., 128, p. 12090 | ||
| 504 | |a Jiang, J., Sandler, S.I., Smit, B., (2004) Nano Lett., 4, p. 241 | ||
| 504 | |a Koone, N., Shao, Y., Zerda, T.W., (1995) J. Phys. Chem., 99, p. 16976 | ||
| 504 | |a Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K., Teramae, N., (2006) Anal. Sci., 22, p. 1501 | ||
| 504 | |a Takahashi, R., Sato, S., Sodesawa, T., Ikeda, T., (2003) Phys. Chem. Chem. Phys., 5, p. 2476 | ||
| 504 | |a Farrer, R.A., Fourkas, J.T., (2003) Acc. Chem. Res., 36, p. 605 | ||
| 504 | |a Liu, G.Y., Li, Y.Z., Jonas, J., (1989) J. Chem. Phys., 90, p. 5881 | ||
| 504 | |a Warnock, J., Awschalom, D.D., Shafer, M.W., (1986) Phys. Rev. B, 34, p. 475 | ||
| 504 | |a Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655 | ||
| 504 | |a Kalra, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 10175 | ||
| 504 | |a Martí, J., Gordillo, M.C., (2001) J. Chem. Phys., 114, p. 10486 | ||
| 504 | |a Martí, J., Gordillo, M.C., (2003) J. Chem. Phys., 119, p. 12540 | ||
| 504 | |a Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188 | ||
| 504 | |a Waghe, A., Rasaiah, J.C., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789 | ||
| 504 | |a Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127 | ||
| 504 | |a Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357 | ||
| 504 | |a Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584 | ||
| 504 | |a Pal, S.K., Peon, J., Zewail, A.H., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1763 | ||
| 504 | |a Pal, S.K., Zhao, L.A., Zewail, A.H., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 8113 | ||
| 504 | |a Levinger, N.E., Swafford, L.A., (2009) Annu. Rev. Phys. Chem., 60, p. 385 | ||
| 504 | |a Lopez, C.F., Nielsen, S.O., M, L.K., Moore, P.B., (2004) J. Phys. Chem. B, 108, p. 6603 | ||
| 504 | |a Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573 | ||
| 504 | |a Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. e, 55, p. 1290 | ||
| 504 | |a Gelb, L.D., Sliwinska-Bartkowiak, M., Gubbins, K.E., Meunier, F., (1998) Fundamentals of Adsorption 6, , Ed.; Elsevier: Paris | ||
| 504 | |a Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864 | ||
| 504 | |a Woywod, D., Schemmel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 124510 | ||
| 504 | |a Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182 | ||
| 504 | |a Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764 | ||
| 504 | |a Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, p. 351 | ||
| 504 | |a Formisano, F., Teixeira, J., (2000) Eur. Phys. J. e, 1, p. 1 | ||
| 504 | |a Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916 | ||
| 504 | |a Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) J. Chem. Phys., 126. , 091103 | ||
| 504 | |a Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744 | ||
| 504 | |a Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 14844 | ||
| 504 | |a Hwang, H., Schatz, G.C., Ratner, M.A., (2006) J. Phys. Chem. B, 110, p. 26448 | ||
| 504 | |a Yu, Y.M., Chipot, C., Cai, W.S., Shao, X.G., (2006) J. Phys. Chem. B, 110, p. 6372 | ||
| 504 | |a Yu, Y.M., Cai, W.S., Chipot, C., Sun, T.T., Shao, X.G., (2008) J. Phys. Chem. B, 112, p. 5268 | ||
| 504 | |a Gulmen, T.S., Thompson, W.H., Fourkas, J.T., Levitz, P., Overney, R., Urbakh, M., (2006) Dynamics in Small Confining Systems VIII, 899. , Eds.; Materials Research Society Symposium Proceedings, Warrendale, PA,; Vol | ||
| 504 | |a Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922 | ||
| 504 | |a Gulmen, T.S., Thompson, W.H., (2009) Langmuir, 25, p. 1103 | ||
| 504 | |a Brodka, A., Zerda, T.W., (1991) J. Chem. Phys., 95, p. 3710 | ||
| 504 | |a Furukawa, S., Nishiumi, T., Aoyama, N., Nitta, T., Nakano, M., (2005) J. Chem. Eng. Jpn., 38, p. 999 | ||
| 504 | |a Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291 | ||
| 504 | |a Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427 | ||
| 504 | |a Grande, M.D.C., Alvarez-Juliá, J., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760 | ||
| 504 | |a Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604 | ||
| 504 | |a Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535 | ||
| 504 | |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323 | ||
| 504 | |a Castrillon, S.R.-V., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438 | ||
| 504 | |a Chandler, D., (2005) Nature, 437, p. 640 | ||
| 504 | |a Chandler, D., (2007) Nature, 445, p. 831 | ||
| 504 | |a Darve, E., Pohorille, A., (2001) J. Chem. Phys., 115, p. 9169 | ||
| 504 | |a Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, p. 2904 | ||
| 504 | |a Rodriguez, J., Semino, R., Laria, D., (2009) J. Phys. Chem. B, 113, p. 1241 | ||
| 504 | |a Marchi, M., Sterpone, F., Ceccarelli, M., (2002) J. Am. Chem. Soc., 124, p. 6787 | ||
| 504 | |a Faeder, J., Ladanyi, B.M., (2000) J. Phys. Chem. B, 104, p. 1033 | ||
| 504 | |a Kalugin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126 | ||
| 504 | |a Striolo, A., (2006) Nano Lett., 6, p. 633 | ||
| 504 | |a Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K., (2007) J. Chem. Phys., 126, p. 124704 | ||
| 504 | |a Alexiadis, A., Kassinos, S., (2008) Mol. Simul., 34, p. 671 | ||
| 504 | |a Lipari, G., Szabo, A., (1980) Biophys. J., 30, p. 489 | ||
| 504 | |a Schröder, G., Alexiev, U., Grubmüller, H., (2005) Biophys. J., 89, p. 3757 | ||
| 504 | |a Kinosita, K., Kawato, S., Ikegami, A., (1981) Biophys. J., 20, p. 289 | ||
| 504 | |a Kawato, S., Kinosita, K., (1981) Biophys. J., 36, p. 277 | ||
| 504 | |a Rodriguez, J., Mart, J., Guardia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990 | ||
| 504 | |a Zang, J., Konduri, S., Nari, S., Sholl, D.S., (2009) ACS Nano, 3, p. 1548 | ||
| 504 | |a Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faraday Trans., 86, p. 277 | ||
| 504 | |a Marcus, Y., Migron, Y., (1991) J. Phys. Chem., 95, p. 400 | ||
| 504 | |a Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596 | ||
| 504 | |a Bergman, D.L., Laaksonen, A., (1998) Phys. Rev. e, 58, p. 4706 | ||
| 504 | |a Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744 | ||
| 504 | |a Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222 | ||
| 504 | |a Zheng, J., Lennon, E.M., Tsao, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702 | ||
| 520 | 3 | |a Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius Rcnt = 0.55 nm, and (16,16) ones, with Rcnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches ∼1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius ∼1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups. © 2010 American Chemical Society. |l eng | |
| 593 | |a Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina | ||
| 593 | |a ECyT, UNSAM, Martín de Irigoyen 3100, (1650) San Martín, Provincia de Buenos Aires, Argentina | ||
| 593 | |a Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (1428) Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a ACETONITRILE |
| 690 | 1 | 0 | |a CARBON NANOTUBES |
| 690 | 1 | 0 | |a HYDROPHOBICITY |
| 690 | 1 | 0 | |a MIXTURES |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a ORGANIC SOLVENTS |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a SILICA |
| 690 | 1 | 0 | |a TUBES (COMPONENTS) |
| 690 | 1 | 0 | |a APROTIC SOLVENTS |
| 690 | 1 | 0 | |a CARBON TUBE |
| 690 | 1 | 0 | |a CHARACTERISTIC TIME |
| 690 | 1 | 0 | |a CONCENTRATION FLUCTUATION |
| 690 | 1 | 0 | |a CONFINED LIQUIDS |
| 690 | 1 | 0 | |a CYLINDRICAL CAVITIES |
| 690 | 1 | 0 | |a DIFFERENT SOLVENTS |
| 690 | 1 | 0 | |a DISPERSIVE FORCES |
| 690 | 1 | 0 | |a EQUIMOLAR MIXTURES |
| 690 | 1 | 0 | |a HYDROPHOBIC CAVITIES |
| 690 | 1 | 0 | |a INNER CAVITIES |
| 690 | 1 | 0 | |a NANO-CAVITIES |
| 690 | 1 | 0 | |a OH GROUP |
| 690 | 1 | 0 | |a OXYGEN SITE |
| 690 | 1 | 0 | |a PORE WALL |
| 690 | 1 | 0 | |a SILANOL GROUPS |
| 690 | 1 | 0 | |a SILICA PORES |
| 690 | 1 | 0 | |a SILICA SUBSTRATE |
| 690 | 1 | 0 | |a SIMILAR SOLUTION |
| 690 | 1 | 0 | |a SOLVENT SPECIES |
| 690 | 1 | 0 | |a TIME CORRELATION FUNCTIONS |
| 690 | 1 | 0 | |a TRIMETHYLSILYL GROUPS |
| 690 | 1 | 0 | |a TUBE WALLS |
| 690 | 1 | 0 | |a NANOPORES |
| 700 | 1 | |a Elola, M.D. | |
| 700 | 1 | |a Laria, D. | |
| 773 | 0 | |d American Chemical Society, 2010 |g v. 114 |h pp. 7900-7908 |k n. 23 |p J Phys Chem B |x 15206106 |w (AR-BaUEN)CENRE-5879 |t Journal of Physical Chemistry B | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953439471&doi=10.1021%2fjp101836b&partnerID=40&md5=726ab01c7b805cd1d4b9c6f69205ef0f |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/jp101836b |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15206106_v114_n23_p7900_Rodriguez |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v114_n23_p7900_Rodriguez |y Registro en la Biblioteca Digital |
| 961 | |a paper_15206106_v114_n23_p7900_Rodriguez |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 68762 | ||