Confined Polar Mixtures within Cylindrical Nanocavities

Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodriguez, J.
Otros Autores: Elola, M.D, Laria, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12464caa a22016457a 4500
001 PAPER-7809
003 AR-BaUEN
005 20230518203735.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77953439471 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Rodriguez, J. 
245 1 0 |a Confined Polar Mixtures within Cylindrical Nanocavities 
260 |b American Chemical Society  |c 2010 
270 1 0 |m Laria, D.; Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina; email: dhlaria@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, p. 15181 
504 |a Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., (2003) Nano Lett., 3, p. 589 
504 |a Byl, O., Liu, J.-C., Wang, Y., Yim, W.-L., Johnson, J.K., Johnson Jr., J.Y., (2006) J. Am. Chem. Soc., 128, p. 12090 
504 |a Jiang, J., Sandler, S.I., Smit, B., (2004) Nano Lett., 4, p. 241 
504 |a Koone, N., Shao, Y., Zerda, T.W., (1995) J. Phys. Chem., 99, p. 16976 
504 |a Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K., Teramae, N., (2006) Anal. Sci., 22, p. 1501 
504 |a Takahashi, R., Sato, S., Sodesawa, T., Ikeda, T., (2003) Phys. Chem. Chem. Phys., 5, p. 2476 
504 |a Farrer, R.A., Fourkas, J.T., (2003) Acc. Chem. Res., 36, p. 605 
504 |a Liu, G.Y., Li, Y.Z., Jonas, J., (1989) J. Chem. Phys., 90, p. 5881 
504 |a Warnock, J., Awschalom, D.D., Shafer, M.W., (1986) Phys. Rev. B, 34, p. 475 
504 |a Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655 
504 |a Kalra, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 10175 
504 |a Martí, J., Gordillo, M.C., (2001) J. Chem. Phys., 114, p. 10486 
504 |a Martí, J., Gordillo, M.C., (2003) J. Chem. Phys., 119, p. 12540 
504 |a Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188 
504 |a Waghe, A., Rasaiah, J.C., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789 
504 |a Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127 
504 |a Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357 
504 |a Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584 
504 |a Pal, S.K., Peon, J., Zewail, A.H., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1763 
504 |a Pal, S.K., Zhao, L.A., Zewail, A.H., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 8113 
504 |a Levinger, N.E., Swafford, L.A., (2009) Annu. Rev. Phys. Chem., 60, p. 385 
504 |a Lopez, C.F., Nielsen, S.O., M, L.K., Moore, P.B., (2004) J. Phys. Chem. B, 108, p. 6603 
504 |a Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573 
504 |a Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. e, 55, p. 1290 
504 |a Gelb, L.D., Sliwinska-Bartkowiak, M., Gubbins, K.E., Meunier, F., (1998) Fundamentals of Adsorption 6, , Ed.; Elsevier: Paris 
504 |a Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864 
504 |a Woywod, D., Schemmel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 124510 
504 |a Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182 
504 |a Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764 
504 |a Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, p. 351 
504 |a Formisano, F., Teixeira, J., (2000) Eur. Phys. J. e, 1, p. 1 
504 |a Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916 
504 |a Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) J. Chem. Phys., 126. , 091103 
504 |a Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744 
504 |a Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 14844 
504 |a Hwang, H., Schatz, G.C., Ratner, M.A., (2006) J. Phys. Chem. B, 110, p. 26448 
504 |a Yu, Y.M., Chipot, C., Cai, W.S., Shao, X.G., (2006) J. Phys. Chem. B, 110, p. 6372 
504 |a Yu, Y.M., Cai, W.S., Chipot, C., Sun, T.T., Shao, X.G., (2008) J. Phys. Chem. B, 112, p. 5268 
504 |a Gulmen, T.S., Thompson, W.H., Fourkas, J.T., Levitz, P., Overney, R., Urbakh, M., (2006) Dynamics in Small Confining Systems VIII, 899. , Eds.; Materials Research Society Symposium Proceedings, Warrendale, PA,; Vol 
504 |a Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922 
504 |a Gulmen, T.S., Thompson, W.H., (2009) Langmuir, 25, p. 1103 
504 |a Brodka, A., Zerda, T.W., (1991) J. Chem. Phys., 95, p. 3710 
504 |a Furukawa, S., Nishiumi, T., Aoyama, N., Nitta, T., Nakano, M., (2005) J. Chem. Eng. Jpn., 38, p. 999 
504 |a Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291 
504 |a Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427 
504 |a Grande, M.D.C., Alvarez-Juliá, J., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760 
504 |a Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604 
504 |a Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535 
504 |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323 
504 |a Castrillon, S.R.-V., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438 
504 |a Chandler, D., (2005) Nature, 437, p. 640 
504 |a Chandler, D., (2007) Nature, 445, p. 831 
504 |a Darve, E., Pohorille, A., (2001) J. Chem. Phys., 115, p. 9169 
504 |a Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, p. 2904 
504 |a Rodriguez, J., Semino, R., Laria, D., (2009) J. Phys. Chem. B, 113, p. 1241 
504 |a Marchi, M., Sterpone, F., Ceccarelli, M., (2002) J. Am. Chem. Soc., 124, p. 6787 
504 |a Faeder, J., Ladanyi, B.M., (2000) J. Phys. Chem. B, 104, p. 1033 
504 |a Kalugin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126 
504 |a Striolo, A., (2006) Nano Lett., 6, p. 633 
504 |a Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K., (2007) J. Chem. Phys., 126, p. 124704 
504 |a Alexiadis, A., Kassinos, S., (2008) Mol. Simul., 34, p. 671 
504 |a Lipari, G., Szabo, A., (1980) Biophys. J., 30, p. 489 
504 |a Schröder, G., Alexiev, U., Grubmüller, H., (2005) Biophys. J., 89, p. 3757 
504 |a Kinosita, K., Kawato, S., Ikegami, A., (1981) Biophys. J., 20, p. 289 
504 |a Kawato, S., Kinosita, K., (1981) Biophys. J., 36, p. 277 
504 |a Rodriguez, J., Mart, J., Guardia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990 
504 |a Zang, J., Konduri, S., Nari, S., Sholl, D.S., (2009) ACS Nano, 3, p. 1548 
504 |a Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faraday Trans., 86, p. 277 
504 |a Marcus, Y., Migron, Y., (1991) J. Phys. Chem., 95, p. 400 
504 |a Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596 
504 |a Bergman, D.L., Laaksonen, A., (1998) Phys. Rev. e, 58, p. 4706 
504 |a Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744 
504 |a Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222 
504 |a Zheng, J., Lennon, E.M., Tsao, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702 
520 3 |a Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius Rcnt = 0.55 nm, and (16,16) ones, with Rcnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches ∼1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius ∼1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups. © 2010 American Chemical Society.  |l eng 
593 |a Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina 
593 |a ECyT, UNSAM, Martín de Irigoyen 3100, (1650) San Martín, Provincia de Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (1428) Buenos Aires, Argentina 
690 1 0 |a ACETONITRILE 
690 1 0 |a CARBON NANOTUBES 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a MIXTURES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a ORGANIC SOLVENTS 
690 1 0 |a OXYGEN 
690 1 0 |a SILICA 
690 1 0 |a TUBES (COMPONENTS) 
690 1 0 |a APROTIC SOLVENTS 
690 1 0 |a CARBON TUBE 
690 1 0 |a CHARACTERISTIC TIME 
690 1 0 |a CONCENTRATION FLUCTUATION 
690 1 0 |a CONFINED LIQUIDS 
690 1 0 |a CYLINDRICAL CAVITIES 
690 1 0 |a DIFFERENT SOLVENTS 
690 1 0 |a DISPERSIVE FORCES 
690 1 0 |a EQUIMOLAR MIXTURES 
690 1 0 |a HYDROPHOBIC CAVITIES 
690 1 0 |a INNER CAVITIES 
690 1 0 |a NANO-CAVITIES 
690 1 0 |a OH GROUP 
690 1 0 |a OXYGEN SITE 
690 1 0 |a PORE WALL 
690 1 0 |a SILANOL GROUPS 
690 1 0 |a SILICA PORES 
690 1 0 |a SILICA SUBSTRATE 
690 1 0 |a SIMILAR SOLUTION 
690 1 0 |a SOLVENT SPECIES 
690 1 0 |a TIME CORRELATION FUNCTIONS 
690 1 0 |a TRIMETHYLSILYL GROUPS 
690 1 0 |a TUBE WALLS 
690 1 0 |a NANOPORES 
700 1 |a Elola, M.D. 
700 1 |a Laria, D. 
773 0 |d American Chemical Society, 2010  |g v. 114  |h pp. 7900-7908  |k n. 23  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953439471&doi=10.1021%2fjp101836b&partnerID=40&md5=726ab01c7b805cd1d4b9c6f69205ef0f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp101836b  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v114_n23_p7900_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v114_n23_p7900_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v114_n23_p7900_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68762