Universal response of quantum systems with chaotic dynamics

The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in-depth description of such a response. The LDOS is the distribution of the overlaps squared connectin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wisniacki, D.A
Otros Autores: Ares, N., Vergini, E.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07570caa a22008417a 4500
001 PAPER-7803
003 AR-BaUEN
005 20230518203735.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77953923376 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRLTA 
100 1 |a Wisniacki, D.A. 
245 1 0 |a Universal response of quantum systems with chaotic dynamics 
260 |c 2010 
270 1 0 |m Wisniacki, D. A.; Departamento de Física J. J. Giambiagi, FCEyN, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Wigner, E.P., (1955) Ann. Math., 62, p. 548. , ANMAAH 0003-486X 10.2307/1970079 
504 |a Flambaum, V.V., Gribakina, A.A., Gribakin, G.F., Kozlov, M.G., (1994) Phys. Rev. A, 50, p. 267. , PLRAAN 1050-2947 10.1103/PhysRevA.50.267 
504 |a Fyodorov, Y., Chubykalo, O., Izrailev, F., Casati, G., (1996) Phys. Rev. Lett., 76, p. 1603. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.1603 
504 |a Casati, G., Chirikov, B.V., Guarneri, I., Izrailev, F.M., Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model (1996) Physics Letters, Section A: General, Atomic and Solid State Physics, 223 (6), pp. 430-435. , DOI 10.1016/S0375-9601(96)00784-0, PII S0375960196007840 
504 |a Cohen, D., Heller, E.J., Unification of perturbation theory, random matrix theory, and semiclassical considerations in the study of parametrically dependent eigenstates (2000) Physical Review Letters, 84 (13), pp. 2841-2844. , http://prola.aps.org/pdf/PRL/v84/i13/p2841_1, DOI 10.1103/PhysRevLett.84.2841, 2841 
504 |a Jalabert, R.A., Pastawski, H.M., Environment-independent decoherence rate in classically chaotic systems (2001) Physical Review Letters, 86 (12), pp. 2490-2493. , DOI 10.1103/PhysRevLett.86.2490 
504 |a Gorin, T., Prosen, T., Seligman, T.H., Znidaric, M., Dynamics of Loschmidt echoes and fidelity decay (2006) Physics Reports, 435 (2-5), pp. 33-156. , DOI 10.1016/j.physrep.2006.09.003, PII S0370157306003310 
504 |a Jacquod, Ph., Petitjean, C., (2009) Adv. Phys., 58, p. 67. , ADPHAH 0001-8732 10.1080/00018730902831009 
504 |a Wisniacki, D.A., Cohen, D., Quantum irreversibility, perturbation independent decay, and the parametric theory of the local density of states (2002) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 66 (4), pp. 046209/1-046209/7. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PLEEE8000066000004046209000001&idtype=cvips, DOI 10.1103/PhysRevE.66.046209, 046209 
504 |a Vanicek, J., Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions (2004) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 70, pp. 0552011-0552014. , DOI 10.1103/PhysRevE.70.055201, 055201 
504 |a Vanícek, J., (2006) Phys. Rev. e, 73, p. 046204. , PLEEE8 1539-3755 10.1103/PhysRevE.73.046204 
504 |a Hammel, S.M., Yorke, J.A., Grebogi, C., (1987) Journal of Complexity, 3, p. 136. , JOCOEH 0885-064X 10.1016/0885-064X(87)90024-0 
504 |a Goussev, A., Waltner, D., Richter, K., Jalabert, R.A., (2008) New J. Phys., 10, p. 093010. , NJOPFM 1367-2630 10.1088/1367-2630/10/9/093010 
504 |a Basilio De Matos, M., Almeida De Ozorio, A.M., (1995) Ann. Phys. (N.Y.), 237, p. 46. , APNYA6 0003-4916 10.1006/aphy.1995.1003 
504 |a Ares, N., Wisniacki, D.A., (2009) Phys. Rev. e, 80, p. 046216. , PLEEE8 1539-3755 10.1103/PhysRevE.80.046216 
504 |a Bunimovich, L.A., (1974) Funct. Anal. Appl., 8, p. 254. , FAAPBZ 0016-2663 10.1007/BF01075700 
504 |a Wisniacki, D.A., Vergini, E., (1999) Phys. Rev. e, 59, p. 6579. , PLEEE8 1063-651X 10.1103/PhysRevE.59.6579 
504 |a Chernov, N., (1997) J. Stat. Phys., 88, p. 1. , JSTPSB 0022-4715 10.1007/BF02508462 
504 |a Vergini, E., Saraceno, M., (1995) Phys. Rev. e, 52, p. 2204. , PLEEE8 1063-651X 10.1103/PhysRevE.52.2204 
504 |a Barnett, A.H., Cohen, D., Heller, E.J., (2000) Phys. Rev. Lett., 85, p. 1412. , PRLTAO 0031-9007 10.1103/PhysRevLett.85.1412 
504 |a Vergini, E.G., (2000) J. Phys. A, 33, p. 4709. , JPHAC5 0305-4470 10.1088/0305-4470/33/25/311 
504 |a Vergini, E.G., Schneider, D., Rivas, A.M.F., (2008) J. Phys. A, 41, p. 405102. , JPHAC5 0305-4470 10.1088/1751-8113/41/40/405102 
504 |a Vergini, E.G., Carlo, G.G., (2001) J. Phys. A, 34, p. 4525. , JPHAC5 0305-4470 10.1088/0305-4470/34/21/308 
504 |a Vergini, E.G., Schneider, D., Asymptotic behaviour of matrix elements between scar functions (2005) Journal of Physics A: Mathematical and General, 38 (3), pp. 587-616. , DOI 10.1088/0305-4470/38/3/005 
504 |a Bohigas, O., Giannoni, M.J., Schmit, C., (1984) Phys. Rev. Lett., 52, p. 1. , PRLTAO 0031-9007 10.1103/PhysRevLett.52.1 
520 3 |a The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in-depth description of such a response. The LDOS is the distribution of the overlaps squared connecting the set of eigenfunctions with the perturbed one. Here, we show that in the case of closed systems with classically chaotic dynamics, the LDOS is a Breit-Wigner distribution under very general perturbations of arbitrary high intensity. Consequently, we derive a semiclassical expression for the width of the LDOS which is shown to be very accurate for paradigmatic systems of quantum chaos. This Letter demonstrates the universal response of quantum systems with classically chaotic dynamics. © 2010 The American Physical Society.  |l eng 
593 |a Departamento de Física J. J. Giambiagi, FCEyN, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina 
593 |a Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, Argentina 
593 |a Departamento de Física, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040-Madrid, Spain 
690 1 0 |a CENTRAL PROBLEMS 
690 1 0 |a CHAOTIC DYNAMICS 
690 1 0 |a CLOSED SYSTEMS 
690 1 0 |a EIGEN FUNCTION 
690 1 0 |a EXTERNAL PERTURBATIONS 
690 1 0 |a HIGH INTENSITY 
690 1 0 |a LOCAL DENSITY OF STATE 
690 1 0 |a QUANTUM CHAOS 
690 1 0 |a QUANTUM MECHANICS 
690 1 0 |a QUANTUM SYSTEM 
690 1 0 |a WIGNER DISTRIBUTION 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
690 1 0 |a PROBABILITY DISTRIBUTIONS 
690 1 0 |a QUANTUM ELECTRONICS 
690 1 0 |a QUANTUM OPTICS 
690 1 0 |a CHAOTIC SYSTEMS 
700 1 |a Ares, N. 
700 1 |a Vergini, E.G. 
773 0 |d 2010  |g v. 104  |k n. 25  |p Phys Rev Lett  |x 00319007  |w (AR-BaUEN)CENRE-386  |t Physical Review Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953923376&doi=10.1103%2fPhysRevLett.104.254101&partnerID=40&md5=50ead6ad6587270d383efc95f2560264  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevLett.104.254101  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00319007_v104_n25_p_Wisniacki  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v104_n25_p_Wisniacki  |y Registro en la Biblioteca Digital 
961 |a paper_00319007_v104_n25_p_Wisniacki  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68756