Photoelectrochemical behavior of alizarin modified TiO2 films

Photocurrent voltage curves obtained under visible light excitation of alizarin molecules chemisorbed to nanoporous TiO2 films show both anodic and cathodic currents. The potential at which the sign reversal occurs depends on the electrolyte pH, the presence of acceptors, and the dye coverage, but a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Di Iorio, Y.
Otros Autores: Rodríguez, H.B, San Román, E., Grela, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10041caa a22012497a 4500
001 PAPER-7763
003 AR-BaUEN
005 20230518203732.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77954257840 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Di Iorio, Y. 
245 1 0 |a Photoelectrochemical behavior of alizarin modified TiO2 films 
260 |c 2010 
270 1 0 |m Grela, M. A.; Departamento de Química, Universidad Nacional de Mar Del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina; email: magrela@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Biancardo, M., Bignozzi, C.A., Doyle, H., Redmond, G., (2005) Chem. Commun., pp. 3918-3920 
504 |a Hebda, M., Stochel, G., Szaciłowski, K., MacYk, W., (2006) J. Phys. Chem. B, 110, pp. 15275-1528 
504 |a Szacilowski, K., (2008) Chem. Rev., 108, pp. 3481-3548 
504 |a Furtado, L., Alexiou, A., Gonalves, L., Toma, H., Araki, K., (2006) Angew. Chem., 118, pp. 3215-3218 
504 |a Szacilowski, K., MacYk, W., Stochel, G., (2006) J. Am. Chem. Soc., 128, pp. 4550-4551 
504 |a Szacilowski, K., MacYk, W., Hebda, M., Stochel, G., (2006) ChemPhysChem., 7, pp. 2384-2391 
504 |a Hebda, M., Stochel, G., Szaciłowski, K., MacYk, W., (2006) J. Phys. Chem. B, 110, pp. 15275-15283 
504 |a Gaweda, S., Stochel, G., Szaciłowski, C., (2008) J. Phys. Chem. C, 112, pp. 19131-19141 
504 |a Shoute, L.C.T., Loppnow, G.R., (2002) J. Chem. Phys., 117, pp. 842-850 
504 |a Redfern, P.C., Zapol, P., Curtiss, L.A., Rajh, T., Thurnauer, M.C., (2003) J. Phys. Chem. B, 107, pp. 11419-11427 
504 |a Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M., (2002) J. Phys. Chem. B, 106, pp. 10543-10552 
504 |a Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluektov, O., Thurnauer, M.C., (1999) J. Phys. Chem. B, 103, pp. 3515-3519 
504 |a Huber, R., Spörlein, S., Moser, J.E., Grätzel, M., Wachtveitl, J., (2000) J. Phys. Chem. B, 104, pp. 8995-9003 
504 |a Huber, R., Moser, J.E., Grätzel, M., Wachtveitl, J., (2002) J. Phys. Chem. B, 106, pp. 6494-6499 
504 |a Di Iorio, Y., San Román, E., Litter, M.I., Grela, M.A., (2008) J. Phys. Chem. C, 112, pp. 16532-16538 
504 |a Di Iorio, Y., Brusa, M.A., Feldhoff, A., Grela, M.A., (2009) ChemPhysChem, 10, pp. 1077-1083 
504 |a Wegner, E.E., Adamson, A.W., (1966) J. Am. Chem. Soc., 88, pp. 394-404 
504 |a Defoin, A., Defoin-Straatmann, R., Hildenbrand, K., Bittersmann, E., Kreft, D., Kuhn, H.J., (1986) J. Photochem., 33, pp. 237-255 
504 |a Kuhn, H.J., Görner, H., (1988) J. Phys. Chem., 92, pp. 6208-6219 
504 |a Nawrocka, A., Krawczyk, S., (2008) J. Phys. Chem. C, 112, pp. 10233-10241 
504 |a Rego, L.G.C., Batista, V.S., (2003) J. Am. Chem. Soc., 125, pp. 7989-7997 
504 |a Duncan, W.R., Prezhdo, O.V., (2005) J. Phys. Chem. B, 109, pp. 365-373 
504 |a Prezhdo, O.V., Duncan, W.R., Prezhdo, V.V., (2008) Acc. Chem. Res., 41, pp. 339-348 
504 |a Kilså, K., Mayo, E.I., Brunschwig, B.S., Gray, H.B., Lewis, N.S., (2004) J. Phys. Chem. B, 108, pp. 15640-15651 
504 |a Bredow, T., Jug, K., (2005) Theor. Chem. Acc., 113, pp. 1-14 
504 |a Bredow, T., Jug, K., (2004) Encyclopedia of Computational Chemistry, , MSINDO online ed. Schleyer, P. v. R.; Schaefer, H. F., III; Schreiner, P. R.; Jorgensen, W. L.; Thiel, W.; Glen, R. C., Eds.; John Wiley & Sons, Ltd.: Chichester, U.K.,; DOI: 10.1002/0470845015.cu0001, article online, posting date: 15th May 
504 |a Mendive, C.B., Bredow, T., Blesa, M.A., Bahnemann, D.W., (2006) Phys. Chem. Chem. Phys., 8, pp. 3232-3247 
504 |a Bonhote, P., Gogniat, E., Tingry, S., Barbé, C., Vlachopoulos, N., Lenzmann, F., Comte, P., Grätzel, M., (1998) J. Phys. Chem. B, 102, pp. 1498-1507 
504 |a Calculations Were Performed Using the 6-31++G(d) Basis Set As Implemented in the SPARTAN 04 Package, , Wavefunction Inc. Irvine, CA 
504 |a Memming, R., (2001) Semiconductor Electrochemistry, , Wiley-VCH Verlag GmbH: Weinheim, Germany 
504 |a Rothenberger, G., Fitzmaurice, D., Grätzel, M., (1992) J. Phys. Chem., 96, pp. 5983-5986 
504 |a Rühle, S., Greenshtein, M., Chen, S., Merson, A., Pizem, H., Sukenik, C., Cahen, D., Zaban, A., (2005) J. Phys. Chem. B, 109, pp. 18907-18913 
504 |a Dimitrijevic, N., Saponjic, Z., Bartels, D., Thurnauer, M., Tiede, D., Rajh, T., (2003) J. Phys. Chem. B, 107, pp. 7368-7375 
504 |a Zhang, Z., Zakeeruddin, S., O'Regan, B., Humphry-Baker, R., Grätzel, M., (2005) J. Phys. Chem. B, 109, pp. 21818-21824 
504 |a Nelson, B.P., Candal, R., Corn, R.M., Anderson, M.A., (2000) Langmuir, 16, pp. 6094-6101 
504 |a Roy, A., De, G.C., Sasmal, N., Bhattacharyya, S., (1995) Int. J. Hydrogen Energy, 20, pp. 627-630 
504 |a Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G., Bisquert, J., (2003) J. Phys. Chem. B, 107, pp. 758-768 
504 |a Bisquert, J., Cahen, D., Hodes, G., Rühle, S., Zaban, A., (2004) J. Phys. Chem. B, 108, pp. 8106-8118 
504 |a Haque, S.A., Tachibana, Y., Willis, R.L., Moser, J.E., Grätzel, M., Klug, D.R., Durrant, J.R., (2000) J. Phys. Chem. B, 104, pp. 538-547 
504 |a Ferber, J., Luther, J., (2001) J. Phys. Chem. B, 105, pp. 4895-4903 
504 |a Haque, S.A., Tachibana, Y., Klug, D.R., Durrant, J.R., (1998) J. Phys. Chem. B, 102, pp. 1745-1749 
504 |a Cameron, P.J., Peter, L.M., Hore, S., (2005) J. Phys. Chem. B, 109, pp. 930-936 
504 |a Salvador, P., Gonzalez Hidalgo, M., Zaban, A., Bisquert, J., (2005) J. Phys. Chem. B, 109, pp. 15915-15926 
504 |a Solarska, R., Rutkowska, I., Augustynski, J., (2008) Inorg. Chim. Acta, 361, pp. 792-797 
504 |a Yang, J., Chen, C., Ji, H., Ma, W., Zhao, J., (2005) J. Phys. Chem. B, 109, pp. 21900-21907 
504 |a Tsujiko, A., Itoh, H., Kisumi, T., Shiga, A., Murakoshi, K., Nakato, Y., (2002) J. Phys. Chem. B, 106, pp. 5878-5885 
504 |a Lana-Villarreal, T., Gómez, R., (2005) Chem. Phys. Lett., 414, pp. 489-494 
504 |a Cornu, C.J.G., Colussi, A.J., Hoffmann, M.R., (2003) J. Phys. Chem. B, 107, pp. 3156-3160 
504 |a Lana Villarreal, T., Bogdanoff, P., Salvador, P., Alonso-Vante, N., (2004) Sol. Energy Mater. Sol. Cells, 83, pp. 347-362 
504 |a Rabani, J., Nielsen, S.O., (1989) J. Phys. Chem., 79, pp. 3738-3744 
504 |a Sawyer, D.T., Valentine, J.S., (1981) Acc. Chem. Res., 14, pp. 393-400 
504 |a Peiró, A.M., Colombo, C., Doyle, G., Nelson, J., Mills, A., Durrant, J.R., (2006) J. Phys. Chem. B, 110, pp. 23255-23263 
504 |a Lindstrom, H., (1996) J. Phys. Chem., 100, pp. 3084-3088 
504 |a Boschloo, G., Fitzmaurice, D., (1999) J. Phys. Chem. B, 103, pp. 2228-2231 
504 |a Wang, H., He, J., Boschloo, G., Lindström, H., Hagfeldt, A., Lindquist, S., (2001) J. Phys. Chem. B, 105, pp. 2529-2533 
504 |a De La Garza, L., Saponjic, Z., Dimitrijevic, N., Thurnauer, M., Rajh, T., (2006) J. Phys. Chem. B, 110, pp. 680-686 
504 |a Frei, H., Fitzmaurice, D., Grätzel, M., (1990) Langmuir, 6, pp. 198-206 
504 |a Moser, J.-E., Punchihewa, S., Infelta, P.P., Grätzel, M., (1991) Langmuir, 7, pp. 3012-3018 
520 3 |a Photocurrent voltage curves obtained under visible light excitation of alizarin molecules chemisorbed to nanoporous TiO2 films show both anodic and cathodic currents. The potential at which the sign reversal occurs depends on the electrolyte pH, the presence of acceptors, and the dye coverage, but as a general rule, it occurs at potentials ca. 600-700 mV more positive than the flat band potential. Negative photocurrents are accounted by efficient electron discharge to the electrolyte mediated by the ligand. Cathodic photocurrents are only observed at pH values higher than ca. 4.0 and go through a maximum at intermediate alizarin loadings. This phenomenon is ascribed to the progressive reparation of surface states by alizarin which hampers carrier transport through the TiO2 matrix and decreases electron discharge to the electrolyte solution. © 2010 American Chemical Society.  |l eng 
593 |a Departamento de Química, Universidad Nacional de Mar Del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina 
593 |a INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina 
690 1 0 |a CATHODIC CURRENTS 
690 1 0 |a CATHODIC PHOTOCURRENT 
690 1 0 |a ELECTROLYTE SOLUTIONS 
690 1 0 |a ELECTRON DISCHARGE 
690 1 0 |a FLAT BAND POTENTIAL 
690 1 0 |a MATRIX 
690 1 0 |a NANOPOROUS TIO 
690 1 0 |a PH VALUE 
690 1 0 |a PHOTOCURRENT-VOLTAGE CURVE 
690 1 0 |a PHOTOELECTROCHEMICAL BEHAVIOR 
690 1 0 |a SIGN REVERSAL 
690 1 0 |a SURFACE STATE 
690 1 0 |a TIO 
690 1 0 |a VISIBLE LIGHT EXCITATION 
690 1 0 |a CHEMISORPTION 
690 1 0 |a PHOTOCURRENTS 
690 1 0 |a SEMICONDUCTOR QUANTUM WELLS 
690 1 0 |a ELECTROLYTES 
700 1 |a Rodríguez, H.B. 
700 1 |a San Román, E. 
700 1 |a Grela, M.A. 
773 0 |d 2010  |g v. 114  |h pp. 11515-11521  |k n. 26  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954257840&doi=10.1021%2fjp102354m&partnerID=40&md5=a66655228eea1f9ec4ea13f2d514ad5b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp102354m  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v114_n26_p11515_DiIorio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v114_n26_p11515_DiIorio  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v114_n26_p11515_DiIorio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68716