On a partly linear autoregressive model with moving average errors

In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bianco, A.
Otros Autores: Boente, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06904caa a22006737a 4500
001 PAPER-7719
003 AR-BaUEN
005 20230518203729.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77954248813 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bianco, A. 
245 1 3 |a On a partly linear autoregressive model with moving average errors 
260 |c 2010 
270 1 0 |m Boente, G.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina; email: gboente@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Anderson, T.W., (1994) The Statistical Analysis of Time Series, , NewYork: John Wiley and Sons 
504 |a Ango Nze, P., Critères d'Ergodicité Géométrique ouArithmétique de Modèles linéaires Perturbés à Représentation Markovienne (1998) Comptes Rendus Del'Academic Des Sciences, Series I (Paris), 326, pp. 371-376 
504 |a Boente, G., Fraiman, R., Ergodicity, Geometric Ergodicity and Mixing Conditions for NonparametricARMA Processes (2002) Bulletin of The Brazilian Mathematical Society, 33, pp. 13-23 
504 |a Bosq, D., (1996) Non parametric Statistics For Stochastic Processes: Estimation and Prediction, 110. , Lectures Notes in Statistics, Berlin: Springer-Verlag 
504 |a Carbon, M., Delecroix, M., Nonparametric Forecasting in Time Series, a Computational Point of View (1993) Applied Stochastic Models and Data Analysis, 9, pp. 215-229 
504 |a Collomb, G., Non Parametric Time Series Analysis and Prediction: Uniform Almost Sure Convergence of the Window and K-NN Autoregression Estimates (1985) Statistics, 16, pp. 297-307 
504 |a Durbin, J., Efficient Estimation of Parameters in Moving-Average Models (1959) Biometrika, 46, pp. 306-316 
504 |a Gao, J., Semiparametric Regression Smoothing of Nonlinear Time Series (1998) Scandinavian Journal of Statistics, 25, pp. 521-539 
504 |a Gao, J., (2007) Non linear Time Series: Semiparametric and Non parametric Methods, , London: Chapman & Hall/CRC 
504 |a Gao, J., Yee, T., Adaptive Estimation in Partly Linear Autoregressive Models (2000) The Canadian Journal of Statistics, 28, pp. 571-586 
504 |a Györfi, L., Härdle, W., Sarda, P., Vieu, P., (1989) Nonparametric Curve Estimation FromTime Series, 60. , Lecture Notes in Statistics, Springer-Verlag 
504 |a Hall, P., Lahiri, S.N., Truong, Y.K., On Bandwidth Choice for Density Estimation With Dependent Data (1995) Annals of Statistics, 23, pp. 2241-2263 
504 |a Härdle, W., Vieu, P., Kernel Regression Smoothing of Time Series (1992) Journal of Time Series Analysis, 13, pp. 209-232 
504 |a Härdle, W., Liang, H., Gao, J., (2000) Partially Linear Models, , Heidelberg: Physica-Verlag 
504 |a Hart, J.D., Automated Kernel Smoothing of Dependent Data by Using Time Series Cross-validation (1994) Journal of The Royal Statistical Society, Series B, 56, pp. 529-542 
504 |a Hart, J.D., SomeAutomated Methods of Smoothing Time-Dependent Data (1996) Journal of Nonparametric Statistics, 6, pp. 115-142 
504 |a Hart, J.D., Wehrly, T.E., Kernel Regression Estimation Using Repeated Measurements Data (1986) Journal of American Statistical Association, 81, pp. 1080-1088 
504 |a Hart, J.D., Andvieu, P., Data-driven Bandwidth Choice for Density Estimation Based on Dependent Data (1990) Annals of Statistics, 18, pp. 873-890 
504 |a Masry, E., Tjøstheim, D., Nonparametric Estimation and Identification of Nonlinear ARCH Time Series (1995) Econometric Theory, 11, pp. 258-289 
504 |a Mokkadem, A., Sur un Modèle Autorégressif Non linéaire, Ergodicité et Ergodicité Géométrique (1987) Journal of Time Series Analysis, 2, pp. 195-204 
504 |a Nummelin, E., Tuominen, P., Geometric Ergodicity of Harris Recurrent Markov Chains WithApplications to Renewal Theory (1982) Stochastics Processes and Their Application, 2, pp. 187-202 
504 |a Robinson, P., Root-n-Consistent Semiparametric Regression (1988) Econometrica, 56, pp. 931-954 
504 |a Rosenblatt, M., (1971) Markov Processes: Structure and Asymptotic Behaviour, , Berlin: Springer-Verlag 
504 |a Tweedie, R.L., Sufficient Conditions for Ergodicity and Recurrence of Markov Chains on a General State Space (1975) Stochastics Processes and Their Application, 3, pp. 385-403 
504 |a Tweedie, R.L., Criteria for Classifying General Markov Chains (1976) Advances InApplied Probability, 8, pp. 737-771 
520 3 |a In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric components is provided together with a test statistic that allows to check the presence of a moving average component in the model. Also, a Monte Carlo study is carried out to check the performance of the given proposals. © American Statistical Association and Taylor & Francis 2010.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 21407, 821, PID 5505, 112-200801-00216 
536 |a Detalles de la financiación: The authors would like to thank an anonymous referee for his valuable comments and suggestions that lead to improve the paper. This research was partially supported by Grants X018 from the Universidad of Buenos Aires, PID 5505 and 112-200801-00216 from conicet and pict 21407 and 821 from anpcyt, Argentina. 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ERGODICITY 
690 1 0 |a FISHER-CONSISTENCY 
690 1 0 |a MOVING AVERAGE ERRORS 
690 1 0 |a PARTLY LINEAR AUTOREGRESSION 
690 1 0 |a SMOOTHING TECHNIQUES 
700 1 |a Boente, G. 
773 0 |d 2010  |g v. 22  |h pp. 797-820  |k n. 6  |p J. Nonparametric Stat.  |x 10485252  |w (AR-BaUEN)CENRE-5720  |t Journal of Nonparametric Statistics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954248813&doi=10.1080%2f10485250903469744&partnerID=40&md5=fbd71f6f0cc5b3b291f20a997d932b8e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/10485250903469744  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10485252_v22_n6_p797_Bianco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10485252_v22_n6_p797_Bianco  |y Registro en la Biblioteca Digital 
961 |a paper_10485252_v22_n6_p797_Bianco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68672