Many-body dynamics on a time-dependent basis

We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hernández, Ester Susana
Otros Autores: Jezek, D.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1988
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03202caa a22004337a 4500
001 PAPER-766
003 AR-BaUEN
005 20250506115718.0
008 190411s1988 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-35949013054 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Hernández, Ester Susana 
245 1 0 |a Many-body dynamics on a time-dependent basis 
260 |c 1988 
270 1 0 |m Hernandez, E.S.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina 
504 |a Solari, H.G., Hernández, E.S., (1982) Phys. Rev. C, 26, p. 2310 
504 |a Dirac, P.A.M., (1930) Proc. Cambridge Philos. Soc., 26, p. 376 
504 |a Lichtner, P.C., Griffin, J.J., Schultheis, H., Schultheis, R., Volkov, A.B., ; Suzuki, T., (1983) Nucl. Phys. A, 398, p. 557 
504 |a Berry, M.V., Quantal Phase Factors Accompanying Adiabatic Changes (1984) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 392, p. 45 
504 |a Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H., (1972) Phys. Rev. A, 6, p. 2211 
504 |a Gilmore, R., (1974) Rev. Mex. Fis., 23, p. 143 
504 |a Lipkin, H.J., Meshkov, N., Glick, A.J., (1965) Nucl. Phys., 62, p. 188 
504 |a Jezek, D.M., Hernández, E.S., Solari, H.G., (1986) Phys. Rev. C, 34, p. 297 
504 |a Jezek, D.M., Hernández, E.S., (1987) Phys. Rev. C, 35, p. 1555 
504 |a Kan, K.K., Lichtner, P.C., Dworzecka, M., Griffin, J.J., (1980) Phys. Rev. C, 21, p. 1098 
504 |a Solari, H.G., Hernández, E.S., (1985) Z. Phys. A, 321, p. 155 
506 |2 openaire  |e Política editorial 
520 3 |a We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The method is illustrated in the case of an N-particle system with an SU(2) Hamiltonian, and it is shown that it improves the approximation that disregards off-diagonal elements of the dynamical matrices. © 1988 The American Physical Society.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina 
700 1 |a Jezek, D.M. 
773 0 |d 1988  |g v. 38  |h pp. 4455-4459  |k n. 9  |x 10502947  |t Physical Review A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35949013054&doi=10.1103%2fPhysRevA.38.4455&partnerID=40&md5=927637fda496f17824f5aeb2e1cc2668  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevA.38.4455  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v38_n9_p4455_Hernandez  |y Registro en la Biblioteca Digital 
961 |a paper_10502947_v38_n9_p4455_Hernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 61719