Modeling of high Reynolds number flows with solid body rotation or magnetic fields

We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filter, whereas the other model, based on spectral clo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pouquet, A.
Otros Autores: Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H., Ponty, Y.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06799caa a22007097a 4500
001 PAPER-7591
003 AR-BaUEN
005 20230518203721.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77957740371 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pouquet, A. 
245 1 0 |a Modeling of high Reynolds number flows with solid body rotation or magnetic fields 
260 |c 2010 
270 1 0 |m Pouquet, A.; NCAR, PO Box 3000, Boulder, CO 80307, United States; email: pouquet@ucar.edu 
506 |2 openaire  |e Política editorial 
504 |a Montgomery, D., Pouquet, A., An alternative interpretation for the Holm "alpha" model (2002) Phys. Fluids, 14, pp. 3365-3366 
504 |a Chen, S.Y., Holm, D.D., Margolin, L.G., Zhang, R., Direct numerical simulations of the Navier-Stokes alpha model (1999) Physica D, 133, pp. 66-83 
504 |a Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Physica D, 152-153, pp. 505-519 
504 |a Holm, D.D., Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics (2002) Chaos, 12, pp. 518-530 
504 |a Chen, S., A connection between the Camassa-Holm equations and turbulent Bows in channels and pipes (1999) Phys. Fluids, 11, pp. 2343-2353 
504 |a Nadiga, B., Shkoller, S., Enhancement of the inverse-cascade of energy in the 2D Lagrangian-averaged Navier-Stokes equations (2001) Phys. Fluids, 13, pp. 1528-1531 
504 |a Mininni, P., Montgomery, D., Pouquet, A., Numerical solutions of the three-dimensional MHD alpha model (2005) Phys. Fluids, 17, p. 035112 
504 |a Pietarila Graham, J., Inertial range scaling kármán theorem and intermittency for forced and decaying lagrangian averaged mhd in 2D (2006) Phys. Fluids, 18, p. 045106 
504 |a Pietarila Graham, J., Highly turbulent solutions of LANS-and their LES potential (2007) Phys. Rev. E, 76, p. 056310 
504 |a Pietarila Graham, J., Three regularization models of the Navier-Stokes equations (2008) Phys. Fluids, 20, p. 035107 
504 |a Pietarila Graham, J., Mininni, P., Pouquet, A., The Lagrangian-averaged model for MHD turbulence and the absence of bottleneck (2009) Phys. Rev. E, , to appear), arxiv/0806.2054v1 
504 |a Graham, J., Mininni, P., Pouquet, A., Cancellation exponent and multifractal structure in Lagrangian averaged magnetohydrodynamics (2005) Phys. Rev. E, 72, p. 045301 
504 |a Orszag, S., Kruskal, M., Formulation of the theory of turbulence (1968) Phys. Fluids, 11, pp. 43-60 
504 |a Baerenzung, J., Spectral modeling of turbulent flows and the role of helicity (2008) Phys. Rev. E, 77, p. 046303 
504 |a Baerenzung, J., Spectral modeling of magnetohydrodynamic turbulent flows (2008) Phys. Rev. E, 78, p. 026310 
504 |a Mininni, P., Alexakis, A., Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers (2009) Phys. Fluids, 21, p. 015108 
504 |a Mininni, P., Pouquet, A., Helicity cascades in rotating turbulence (2009) Phys. Fluids, , to appear); See also arxiv: 0809.0869 
504 |a Baerenzung, J., Modeling of rotating flows at moderate Rossby numbers (2009) Phys. Rev. E, , submitted); See also arXiv:0812.1821v1 
504 |a Baerenzung, J., (2009) Modeling of Rotating Flows With Helicity, , in preparation 
504 |a Chollet, J.P., Lesieur, M., Parametrization of small-scale three-dimensional isotropic turbulence using spectral closures (1981) J. Atmos. Sci., 38, pp. 2747-2757 
504 |a André, J.C., Lesieur, M., Influence of helicity on the evolution of isotropic turbulence at high reynolds number (1977) J. Fluid Mech., 81, pp. 187-207 
504 |a Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, , Cambridge Univ. Press, Cambridge 
504 |a Cambon, C., Scott, J.F., Linear and nonlinear models of anisotropic turbulence (1999) Ann. Rev. Fluid Mech., 31, pp. 1-53 
504 |a Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New J. Phys., 6 (73), pp. 1-29 
504 |a Cui, G.X., A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence (2007) J. Fluid Mech., 582, pp. 377-397 
504 |a Childress, S., Gilbert, A., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Springer, Heidelberg 
504 |a Mininni, P., Pouquet, A., Persistent cyclonic structures in self-similar turbulent flows (2009) Phys. Rev. Lett., , arXiv: 0903.2294 (submitted 
504 |a Ponty, Y., Critical magnetic Reynolds number for dynamo action as a function of magnetic Prandtl number (2005) Phys. Rev. Lett., 94, p. 164502 
520 3 |a We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filter, whereas the other model, based on spectral closures, generalizes the concepts of eddy viscosity and eddy noise. These models, when used separately or in conjunction, may lead to substantial savings for modeling high Reynolds number flows when checked against high resolution direct numerical simulations (DNS), the examples given here being run on grids of up to 15363 points. © 2010 Springer-Verlag Berlin Heidelberg.  |l eng 
593 |a NCAR, PO Box 3000, Boulder, CO 80307, United States 
593 |a MPI für Sonnensystemforschung, 37191 Katlenburg, Germany 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Observatoire de la Côte d'Azur, Nice, France 
700 1 |a Baerenzung, J. 
700 1 |a Pietarila Graham, J. 
700 1 |a Mininni, P. 
700 1 |a Politano, H. 
700 1 |a Ponty, Y. 
773 0 |d 2010  |g v. 110  |h pp. 287-294  |p Notes Numer. Fluid Mech.  |x 16122909  |z 9783642141386  |t Notes on Numerical Fluid Mechanics and Multidisciplinary Design 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957740371&doi=10.1007%2f978-3-642-14139-3-35&partnerID=40&md5=17d1ee399be7372a3d7f985dc6a7c2b5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-642-14139-3-35  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16122909_v110_n_p287_Pouquet  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16122909_v110_n_p287_Pouquet  |y Registro en la Biblioteca Digital 
961 |a paper_16122909_v110_n_p287_Pouquet  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68544