Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-alzheimer agents

Dual binding site acetylcholinesterase inhibitors have recently emerged as a new class of anti-Alzheimer agents with potential to positively modify the course of the disease. These compounds exhibit a multifunctional pharmacological profile arising from interaction with several biological targets in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Galdeano, C.
Otros Autores: Viayna, E., Arroyo, P., Bidon-Chanal, A., Blas, J.R, Muñoz-Torrero, D., Luque, F.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Bentham Science Publishers B.V. 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 33366caa a22026177a 4500
001 PAPER-7578
003 AR-BaUEN
005 20230518203720.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77957932175 
024 7 |2 cas  |a acetylcholine, 51-84-3, 60-31-1, 66-23-9; acetylcholinesterase, 9000-81-1; amyloid beta protein, 109770-29-8; cholinesterase, 9001-08-5; decamethonium, 1420-40-2, 156-74-1, 3198-38-7, 541-22-0; donepezil, 120011-70-3, 120014-06-4, 142057-77-0; galantamine, 1953-04-4, 357-70-0; gallamine, 153-76-4; huperzine A, 102518-79-6, 92138-20-0; physostigmine, 57-47-6, 64-47-1; propidium iodide, 25535-16-4; tacrine, 1684-40-8, 3198-41-2, 321-64-2; thioflavine, 2390-54-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CPDEF 
100 1 |a Galdeano, C. 
245 1 0 |a Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-alzheimer agents 
260 |b Bentham Science Publishers B.V.  |c 2010 
270 1 0 |m Muñoz-Torrero, D.; Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain; email: dmunoztorrero@ub.edu 
506 |2 openaire  |e Política editorial 
504 |a (2009) Alzheimer's Disease Facts and Figures.Alzheimers Dementia, 5, pp. 234-270. , Alzheimer's Association 
504 |a Wimo, A., Winblad, B., Jönsson, L., The worldwide societal costs ofdementia: Estimates for 2009 (2010) Alzheimers Dementia, 6, pp. 98-103 
504 |a Yamin, G., Ono, K., Inayathullah, M., Teplow, D.B., Amyloid β-protein assembly as a therapeutic target of Alzheimer's disease (2008) CurrPharm Des, 14, pp. 3231-3246 
504 |a Ghosh, A.K., Gemma, S., Tang, J., β-Secretase as a therapeutic targetfor Alzheimer's disease (2008) Neurotherapeutics, 5, pp. 399-408 
504 |a Silvestri, R., Boom in the development of non-peptidic -secretase(BACE-1) inhibitors for the treatment of Alzheimer's disease (2009) Med Res Rev, 29, pp. 295-338 
504 |a Sussman, J.L., Harel, M., Frolow, F., Atomic structure of acetyl-cholinesterase from Torpedo californica, a prototypic acetylcho-line-binding protein (1991) Science, 253, pp. 872-879 
504 |a Lane, R.M., Potkin, S.G., Enz, A., Targeting acetylcholinesterase and butyrylcholinesterase in dementia (2006) Int J Neuropsychopharmacol, 9, pp. 101-124 
504 |a Lane, R.M., He, Y., Emerging hypotheses regarding the influence ofbutyrylcholinesterase-K variant, APOE e4, and hyperhomocys-teinemia in neurodegenerative dementias (2009) Med Hypothes, 73, pp. 230-250 
504 |a Greig, N.H., Utsuki, T., Ingram, D.K., Selective butyrylcho-linesterase inhibition elevates brain acetylcholine, augments learn-ing and lowers Alzheimer β-amyloid peptide in rodent (2005) Proc NatlAcad Sci USA, 102, pp. 17213-17218 
504 |a Weinstock, M., Selectivity of cholinesterase inhibition: Clinicalimplications for the treatment of Alzheimer's disease (1999) CNS Drugs, 12, pp. 307-323 
504 |a Giacobini, E., Cholinesterase inhibitors: New roles and the rapeuticalternatives (2004) Pharmacol Res, 50, pp. 433-440 
504 |a Venneri, A., McGeown, W.J., Shanks, M.F., Empirical evidence ofneuroprotection by dual cholinesterase inhibition in Alzheimer'sdisease (2005) Neuropharmacol Neurotoxicol, 16, pp. 107-110 
504 |a Giacobini, E., Spiegel, R., Enz, A., Veroff, A.E., Cutler, N.R., Inhibition ofacetyl- and butyryl-cholinesterase in the cerebrospinal fluid of pa-tients with Alzheimer's disease by rivastigmine: Correlation withcognitive benefit (2002) J Neural Transm, 109, pp. 1053-1065 
504 |a Inestrosa, N.C., Alvarez, A., Pérez, C.A., Acetylcholinesteraseaccelerates assembly of amyloid-β-peptides into Alzheimer's fi-brils: Possible role of the peripheral site of the enzyme (1996) Neuron, 16, pp. 881-891 
504 |a Inestrosa, N.C., Dinamarca, M.C., Alvarez, A., Amyloid cholinesteraseinteractions. Implications for Alzheimer's disease (2008) FEBS J, 275, pp. 625-632 
504 |a Rees, T., Hammond, P.I., Soreq, H., Younkin, S., Brimijoin, S., Acetyl-cholinesterase promotes beta-amyloid plaques in cerebral cortex (2003) Neurobiol Aging, 24, pp. 777-787 
504 |a Alvarez, A., Alarcón, R., Opazo, C., Stable complexes involvingacetylcholinesterase and amyloid- peptide change the biochemicalproperties of the enzyme and increase the neurotoxicity of Alz-heimer's fibrils (1998) J Neurosci, 18, pp. 3213-3223 
504 |a Reyes, A.E., Chacón, M.A., Dinamarca, M.C., Cerpa, W., Morgan, C., Inestrosa, N.C., Acetylcholinesterase-A complexes are more toxicthan A fibrils in rat hippocampus: Effect on rat -amyloid aggre-gation, laminin expression, reactive astrocytosis, and neuronal cellloss (2004) Am J Pathol, 164, pp. 163-174 
504 |a Rees, T.M., Berson, A., Sklan, E.H., Memory deficits correlatingwith acetylcholinesterase splice shift and amyloid burden in doublytransgenic mice (2005) Curr Alzheimer Res, 2, pp. 291-300 
504 |a Hamley, I.W., Peptide fibrillization (2007) Angew Chem Int Ed, 46, pp. 8128-8147 
504 |a Espallergues, J., Galvan, L., Sabatier, F., Rana-Poussine, V., Maurice, T., Chatonnet, A., Behavioral phenotyping of heterozygous acetylcho-linesterase knockout (AChE+/) mice showed no memory enhance-ment but hyposensitivity to amnesic drugs (2010) Behav Brain Res, 206, pp. 263-273 
504 |a de Ferrari, G.V., Canales, M.A., Shin, I., Weiner, L.M., Silman, I., Ine-Strosa, N.C., A structural motif of acetylcholinesterase that promotesamyloid beta-peptide fibril formation (2001) Biochemistry, 40, pp. 10447-10457 
504 |a Diamant, S., Podoly, E., Friedler, A., Ligumsky, H., Livnah, O., Soreq, H., Butyrylcholinesterase attenuates amyloid fibril formation in vitro (2006) Proc Natl Acad Sci USA, 103, pp. 8628-8633 
504 |a Cavalli, A., Bolognesi, M.L., Capsoni, S., A small moleculetargeting the multifactorial nature of Alzheimer's disease (2007) Angew Chem Int Ed, 46, pp. 3689-3692 
504 |a Pang, Y.P., Quiram, P., Jelacic, T., Hong, F., Brimijoin, S., Highly potent,selective, low cost bis-tetrahydroaminacrine inhibitors of acetyl-cholinesterase (1996) J Biol Chem, 271, pp. 23646-22349 
504 |a Li, W., Mak, M., Jiang, H., Novel anti-Alzheimer's dimer bis(7)-cognitin: Cellular and molecular mechanisms of neuroprotectionthrough multiple targets (2009) Neurotherapeutics, 6, pp. 187-201 
504 |a http://www.noscira.com; Castro, A., Martinez, A., Peripheral and dual binding site acetylcho-linesterase inhibitors: Implications in treatment of Alzheimer's dis-ease (2001) Mini Rev Med Chem, 1, pp. 267-272 
504 |a Cavalli, A., Bolognesi, M.L., Minarini, A., Multi-target-directedligands to combat neurodegenerative diseases (2008) J Med Chem, 51, pp. 347-372 
504 |a Muñoz-Torrero, D., Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer's disease (2008) Curr Med Chem, 15, pp. 2433-2455 
504 |a García-Palomero, E., Muñoz, P., Usan, P., Potent -amyloidmodulators (2008) Neurodegener Dis, 5, pp. 153-156 
504 |a Loudwig, S., Nicolet, Y., Masson, P., Photoreversible inhibitionof cholinesterases: Catalytic serine-labeled caged butyrylcholineste-rase (2003) ChemBioChem, 4, pp. 762-767 
504 |a Savini, L., Gaeta, A., Fattorusso, C., Specific targeting of acetyl-cholinesterase and butyrylcholinesterase recognition sites. Rationaldesign of novel, selective, and highly potent cholinesterase inhibi-tors (2003) J Med Chem, 46, pp. 1-4 
504 |a Campiani, G., Fattorusso, C., Butini, S., Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors (2005) J Med Chem, 48, pp. 1919-1929 
504 |a Masson, P., Froment, M.T., Fort, S., Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: Analysis of volume changes upon reaction and hysteretic behavior (2002) Biochim Bio-phys Acta, 1597, pp. 229-243 
504 |a Lin, G., Chen, G.H., Lu, C.P., Yeh, S.C., QSARs for peripheral anionicsite of butyrylcholinesterase with inhibitions by 4-acyloxy-biphenyl-4'-N-butylcarbamates (2005) QSAR Comb Sci, 24, pp. 943-952 
504 |a Camps, P., Formosa, X., Muñoz-Torrero, D., Petrignet, J., Badia, A., ClosMV. Synthesis and pharmacological evaluation of huprine tacrineheterodimers: Subnanomolar dual binding site acetylcholinesteraseinhibitors (2005) J Med Chem, 48, pp. 1701-1714 
504 |a Camps, P., Formosa, X., Galdeano, C., Novel Donepezil basedinhibitors of acetyl- and butyryl cholinesterase and acetylcho-linesterase-induced -amyloid aggregation (2008) J Med Chem, 51, pp. 3588-3598 
504 |a Fang, L., Kraus, B., Lehmann, J., Heilmann, J., Zhang, Y., Decker, M., Design and synthesis of tacrine-ferulic acid hybrids as multi-potentanti-Alzheimer drug candidates (2008) Bioorg Med Chem Lett, 18, pp. 2905-2909 
504 |a Fernández-Bachiller, M.I., Pérez, C., Campillo, N.E., Tacrine-melatonin hybrids as multifunctional agents for Alzheimer's dis-ease, with cholinergic, antioxidant, and neuroprotective properties (2009) Chem Med Chem, 4, pp. 828-841 
504 |a Fang, L., Appenroth, D., Decker, M., Synthesis and biologicalevaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates (2008) J Med Chem, 51, pp. 713-716 
504 |a Elsinghorst, P.W., Cieslik, J.S., Mohr, K., Tränkle, C., Gütschow, M., Firstgallamine-tacrine hybrid: Design, and characterization at cho-linesterases and the M2 muscarinic receptor (2007) J Med Chem, 50, pp. 5685-5695 
504 |a Muñoz-Ruiz, P., Rubio, L., García-Palomero, E., Design, synthe-sis, and biological evaluation of dual binding site acetylcho-linesterase inhibitors: New disease-modifying agents for Alz-heimer's disease (2005) J Med Chem, 48, pp. 7223-7233 
504 |a Bolognesi, M.L., Cavalli, A., Valgimigli, L., Multi-target-directeddrug design strategy: From a dual binding site acetylcholinesteraseinhibitor to a trifunctional compound against Alzheimer's disease (2007) J Med Chem, 50, pp. 6446-6449 
504 |a Harrison, S.M., Harper, A.J., Hawkins, J., BACE1 (β-secretase)transgenic and knockout mice: Identification of neurochemicaldeficits and behavioral changes (2003) Mol Cell Neurosci, 24, pp. 646-655 
504 |a McConlogue, L., Buttini, M., Anderson, J.P., Partial reduction ofBACE1 has dramatic effects on Alzheimer plaque and synaptic pa-thology in APP transgenic mice (2007) J Biol Chem, 282, pp. 26326-26334 
504 |a Hong, L., Koelsch, G., Lin, X., Structure of the protease domainof memapsin 2 (β-secretase) complexed with inhibitor (2000) Science G, 290, pp. 150-153 
504 |a Hong, L., Turner, R.T., Koelsch, G., Shin, D., Ghosh, A.K., Tang, J., Crystal structure of memapsin 2 (β-secretase) in complex with aninhibitor OM00-3 (2002) Biochemistry, 41, pp. 10963-10967 
504 |a Mancini, F., Naldi, M., Cavrini, V., Andrisano, V., Multiwell fluoromet-ric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors (2007) Anal Bioanal Chem, 388, pp. 1175-1183 
504 |a Fu, H., Li, W., Luo, J., Promising anti-Alzheimer's dimer bis(7)-tacrine reduces β-amyloid generation by directly inhibiting BACE-1 activity (2008) Biochem Biophys Res Commun, 366, pp. 631-636 
504 |a Rosini, M., Andrisano, V., Bartolini, M., Melchiorre, C., Organic Com-pounds Useful For the Treatment of Alzheimer's Disease, their Useand Method of Preparation, , WO 2006/080043 A2 
504 |a Piazzi, L., Cavalli, A., Colizzi, F., Multi-target-directed coumarinderivatives: HAChE and BACE1 inhibitors as potential anti-Alzheimer compounds (2008) Bioorg Med Chem, 18, pp. 423-426 
504 |a Camps, P., Formosa, X., Galdeano, C., Pyrano [3,2-c]quinoline 6-chlorotacrine hybrids as a novel family of acetylcho-linesterase- and -amyloid-directed anti-Alzheimer compounds (2009) J Med Chem, 52, pp. 5365-5379 
504 |a Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P., Sussman, J.L., Structure of acetylcholinesterase complexed with the nootropicalkaloid, (-)-huperzine A (1997) Nature Struct Biol, 4, pp. 57-63 
504 |a Dvir, H., Jiang, H.L., Wong, D.M., X-ray structures of Torpedocalifornica acetylcholinesterase complexed with (+)-huperzine Aand (-)-huperzine-B: Structural evidence for an active site rear-rangement (2002) Biochemistry, 41, pp. 10810-10818 
504 |a Barril, X., Kalko, S.G., Orozco, M., Luque, F.J., Rational design ofreversible acetylcholinesterase inhibitors (2002) Mini Rev Med Chem, 2, pp. 27-36 
504 |a Harel, M., Schalk, I., Ehret-Sabatier, L., Quaternary ligandbinding to aromatic residues in the active-site gorge of acetylcho-linesterase (1993) Proc Nat Acad Sci USA, 90, pp. 9031-9035 
504 |a Camps, P., Muñoz-Torrero, D., Tacrine-Huperzine, A., Hybrids (hupri-nes): A new class of highly potent and selective acetylcho-linesterase inhibitors of interest for the treatment of Alzheimer dis-ease (2001) Mini Rev Med Chem, 1, pp. 163-174 
504 |a Camps, P., El Achab, R., Görbig, D.M., Synthesis, in vitro phar-macology, and molecular modeling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potentialinterest for the treatment of Alzheimer's disease (1999) J Med Chem, 42, pp. 3227-3242 
504 |a Barril, X., Orozco, M., Luque, F.J., Predicting relative binding freeenergies of tacrine-huperzine A hybrids as inhibitors of acetylcho-linesterase (1999) J Med Chem, 42, pp. 5110-5119 
504 |a Camps, P., El Achab, R., Morral, J., New tacrine-huperzine Ahybrids (huprines): Highly potent tight-binding acetylcho-linesterase inhibitors of interest for the treatment of Alzheimer'sdisease (2000) J Med Chem, 43, pp. 4657-4666 
504 |a Dvir, H., Wong, D.M., Harel, M., 3D structure of Torpedo cali-fornica acetylcholinesterase complexed with huprine X at 2.1 resolution: Kinetic and molecular dynamic correlates (2002) Biochemistry, 41, pp. 2970-2981 
504 |a Camps, P., Gómez, E., Muñoz-Torrero, D., Binding of 13-amidopurines to acetylcholinesterase: Exploring the ligand-inducedconformational change of the Gly117-Gly118 peptide bond in theoxyanion hole (2006) J Med Chem, 49, pp. 6833-6840 
504 |a Pilger, C., Bartolucci, C., Lamba, D., Tropsha, A., Fels, G., Accurateprediction of the bound conformation of galanthamine in the activesite of Torpedo californica acetylcholinesterase using moleculardocking (2001) J Mol Graphics Model, 19, pp. 288-296 
504 |a Bartolucci, C., Pilger, C., Fels, G., Lamba, D., Three-dimensionalstructure of a complex of galanthamine (Nivalin) with acetylcho-linesterase from Torpedo californica: Implications for the design ofnew anti-Alzheimer drugs (2001) Proteins: Struct Funct Bioinf, 42, pp. 182-191 
504 |a Greenblatt, H.M., Kryger, G., Lewis, T., Silman, I., Sussman, J.L., Struc-ture of acetylcholinesterase complexed with (-)-galanthamine at2.3 Å resolution (1999) FEBS Lett, 463, pp. 321-326 
504 |a Bourne, Y., Taylor, P., Radi, Z., Marchot, P., Structural insights intoligand interactions at the acetylcholinesterase peripheral anionicsite (2003) EMBO J, 22, pp. 1-12 
504 |a Cavalli, A., Bottegoni, G., Raco, C., de Vivo, M., Recanatini, M.A., Computational study of the binding of propidium to the peripheralanionic site of human acetylcholinesterase (2004) J Med Chem, 47, pp. 3991-3999 
504 |a Szegletes, T., Mallender, W.D., Rosenberry, T.L., Nonequilibriumanalysis alters the mechanistic interpretation of inhibition of acetyl-cholinesterase by peripheral site ligands (1998) Biochemistry, 37, pp. 4206-4216 
504 |a Harel, M., Sonoda, L.K., Silman, I., Sussman, J.L., Rosenberry, T.L., Crystal structure of thioflavin T bound to the peripheral site ofTorpedo californica acetylcholinesterase reveals how thioflavin Tacts as a sensitive fluorescent reporter of ligand binding to the acy-lation site (2008) J Am Chem Soc, 130, pp. 7856-7861 
504 |a Kryger, G., Silman, I., Sussman, J.L., Structure of acetylcholinesterasecomplexed with E2020 (Aricept): Implications for the design ofnew anti-Alzheimer drugs (1999) Structure, 7, pp. 297-307 
504 |a Rydberg, E.H., Brumshtein, B., Greenblatt, H.M., Complexes ofalkylene-linked tacrine dimers with Torpedo californica acetylcho-linesterase: Binding of bis(5)-tacrine produces a dramatic rear-rangement in the active-site gorge (2006) J Med Chem, 49, pp. 5491-5500 
504 |a Colletier, J.P., Sanson, B., Bachon, F., Conformational flexibilityin the peripheral site of Torpedo californica acetylcholinesteraserevealed by the complex structure with a bifunctional inhibitor (2006) J Am Chem Soc, 128, pp. 4526-4527 
504 |a Gemma, S., Gabellieri, E., Huleatt, P., Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites (2006) J Med Chem, 49, pp. 3421-3425 
504 |a Haviv, H., Wong, D.M., Greenblatt, H.M., Crystal packing mediates enantioselective ligand recognition at the peripheral site ofacetylcholinesterase (2005) J Am Chem Soc, 127, pp. 11029-11036 
504 |a Bourne, Y., Kolb, H.C., Radic, Z., Sharpless, K.B., Taylor, P., Marchot, P., Freeze-frame inhibitor captures acetylcholinesterase in a uniqueconformation (2004) Proc Natl Acad Sci USA, 101, pp. 1449-1454 
504 |a Senapati, S., Bui, J.M., McCammon, J.A., Induced fit in mouse acetyl-cholinesterase upon binding a femtomolar inhibitor: A moleculardynamics study (2005) J Med Chem, 48, pp. 8155-8162 
504 |a Wong, D.M., Greenblatt, H.M., Dvir, H., Acetylcholinesterasecomplexed with bivalent ligands related to huperzine A: Experi-mental evidence for species-dependent protein-ligand complemen-tarity (2003) J Am Chem Soc, 125, pp. 363-373 
504 |a Greenblatt, H.M., Guillou, C., Guénard, D., The complex of abivalent derivative of galanthamine with Torpedo acethylcho-linesterase displays drastic deformation of the active-site gorge:Implications for structure-based drug design (2004) J Am Chem Soc, 126, pp. 15405-15411 
504 |a Bartolucci, C., Haller, L.A., Jordis, U., Fels, G., Lamba, D., ProbingTorpedo californica acetylcholinesterase catalytic gorge with twonovel bis-functional galanthamine derivatives (2010) J Med Chem, 53, pp. 745-751 
504 |a Adcock, S.A., McCammon, J.A., Molecular dynamics: Survey ofmethods for simulating the activity of proteins (2006) Chem Rev, 106 (1589), p. 615 
504 |a Kua, J., Zhang, Y., McCammon, J.A., Studying enzyme binding speci-ficity in acetylcholinesterase using a combined molecular dynamicsand multiple docking approach (2002) J Am Chem Soc, 124, pp. 8260-8267 
504 |a Bartolucci, C., Perola, E., Cellai, L., Brufani, M., Lamba, D., Backdoor opening implied by the crystal structure of a carbamoylatedacetylcholinesterase (1999) Biochemistry, 38, pp. 5714-5719 
504 |a Rampa, A., Bisi, A., Valenti, P., Acetylcholinesterase inhibitors:Synthesis and structure-activity relationships of [N-methyl-N-(3-alkylcarbamoyloxyphenyl)-methyl]aminoalkoxyheteroaryl derivatives (1998) J Med Chem, 41, pp. 3976-3986 
504 |a Rampa, A., Piazzi, L., Belluti, F., Acetylcholinesterase inhibitors:SAR and kinetic studies on [N-methyl-N-(3-alkylcarbamoyloxyphenyl)-methyl]aminoalkoxyaryl derivatives (2001) J Med Chem, 44, pp. 3810-3820 
504 |a Belluti, F., Rampa, A., Piazzi, L., Cholinesterase inhibitors:Xanthostigmine derivatives blocking the acetylcholinesterase-induced -amyloid aggregation (2005) J Med Chem, 48, pp. 4444-4456 
504 |a Nachon, F., Nicolet, Y., Viguié, N., Engineering of a monomericand low-glycosylated form of human butyrylcholinesterase (2002) Eur J Biochem, 269, pp. 630-637 
504 |a Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J.C., Nachon, F., Crystal structure of human butyrylcholinesterase and of its com-plexes with substrate and products (2003) J Biol Chem, 278, pp. 41141-41147 
504 |a Ngamelue, M.N., Homma, K., Lockridge, O., Asojo, O.A., Crystallization and X-ray structure of full-length recombinant human butyryl-cholinesterase (2007) Acta Cryst, F63, pp. 723-727 
504 |a Radic, Z., Pickering, N.A., Vellom, D.C., Camp, S., Taylor, P., Threedistinct domains in the cholinesterase molecule confer selectivityfor acetyl- and butyrylcholinesterase inhibitors (1993) Biochemistry, 32, pp. 12074-12084 
504 |a Butini, S., Campiani, G., Borriello, M., Exploiting protein fluc-tuations at the active-site gorge of human cholinesterases: Futureoptimization of the design strategy to develop extremely potent in-hibitors (2008) J Med Chem, 51, pp. 3154-3170 
504 |a Elsinghorst, P.W., Cieslik, J.S., Mohr, K., Tränkle, C., Gütschow, M., Firstgallamine-tacrine hybrid: Design and characterization at cho-linesterases and the M2 muscarinic receptor (2007) J Med Chem, 50, pp. 5685-5695 
504 |a Tumiatti, V., Milelli, A., Minarini, A., Structure-activity relation-ships of acetylcholinesterase noncovalent inhibitors based on apolyamine backbone. 4. Further investigation on the inner spacer (2008) J Med Chem, 51, pp. 7308-7312 
504 |a Pan, L., Tan, J.H., Hou, J.Q., Huang, S.L., Gu, L.Q., Huang, Z.S., Design,synthesis and evaluation of isainditigotone derivates as acetylcho-linesterase and butyrylcholinesterase inhibitors (2008) Bioorg Med Chem Lett, 18, pp. 3790-3793 
504 |a Vassar, R., Bennett, B.D., Babu-Khan, S., Beta-secretase cleavageof Alzheimer's amyloid precursor protein by the transmembraneaspartic protease BACE (1999) Science, 286, pp. 735-741 
504 |a Yan, R., Bienkowski, M.J., Shuck, M.E., Membrane-anchoredaspartyl protease with Alzheimer's disease beta-secretase activity (1999) Nature, 402, pp. 533-537 
504 |a Sinha, S., Anderson, J.P., Barbour, R., Purification and cloning ofamyloid precursor protein beta-secretase from human brain (1999) Nature, 402, pp. 537-540 
504 |a Sinha, S., Lieberburg, I., Cellular mechanisms of beta-amyloid production and secretion (1999) Proc Natl Acad Sci USA, 9, pp. 11049-11053 
504 |a Ghosh, A.K., Bilcer, G., Harwood, C., Structure-based design:Potent inhibitors of human brain memapsin 2 (beta-secretase) (2001) J Med Chem, 44, pp. 2865-2868 
504 |a John, V., Beck, J.P., Bienkowski, M.J., Sinha, S., Heinrikson, R.L., Humanbeta-secretase (BACE) and BACE inhibitors (2003) J Med Chem, 46, pp. 4625-4630 
504 |a Hong, L., Koelsch, G., Lin, X., Structure of the protease domainof memapsin 2(beta-secretase) complexed with inhibitor (2000) Science, 290, pp. 150-153 
504 |a Ghosh, A.K., Shin, D., Downs, D., Design of potent inhibitors forhuman brain memapsin 2 (β-secretase) (2000) J Am Chem Soc, 122, pp. 3522-3523 
504 |a Hong, L., Tang, J., Flap position of free memapsin 2 (beta-secretase),a model for flap opening in aspartic protease catalysis (2004) Biochemistry, 43, pp. 4689-4695 
504 |a Patel, S., Vuillard, L., Cleasby, A., Murray, C.W., Yon, J., Apo andinhibitor complex structures of BACE (beta-secretase) (2004) J Mol Biol, 343, pp. 407-416 
504 |a Shimizu, H., Tosaki, A., Kaneko, K., Hisano, T., Sakurai, T., Nukina, N., Crystal structure of an active form of BACE1, an enzyme resposible for amyloid beta protein production (2008) Mol Cell Biol, 28, pp. 3663-3971 
504 |a Yu, N., Hayik, S.A., Wang, B., Liao, N., Reynolds, C.H., Merz Jr., K.M., Assigning the protonation states of the key aspartates in β-secretaseusing QM/MM X-ray structure refinement (2006) J Chem Theory Comput, 2, pp. 1057-1069 
504 |a Polgár, T., Keserü, G.M., Virtual screening for β-secretase (BACE1)inhibitors reveals the importance of protonation states at Asp32 andAsp228 (2005) J Med Chem, 48, pp. 3749-3755 
504 |a Park, H., Lee, S., Determination of the active site protonation state of-secretase from molecular dynamics simulation and docking experiment: Implications for structure-based inhibitor design (2003) J AmChem Soc, 125, pp. 16416-16422 
504 |a Rajamani, R., Reynolds, C.H., Modeling the protonation states of thecatalytic aspartates in β-secretase (2004) J Med Chem, 47, pp. 5159-5166 
504 |a Huang, D., Caflisch, A., Efficient evaluation of binding free energyusing continuum electrostatics solvation (2004) J Med Chem, 47, pp. 5791-5797 
504 |a Murray, C.W., Callaghan, O., Chessari, G., Application of frag-ment screening by X-ray crystallography to beta-secretase (2007) J Med Chem, 50, pp. 1116-1123 
504 |a Hanessian, S., Yun, H., Hou, Y., Structure-based design, synthesis, and memapsin 2 (BACE) inhibitory activity of carbocyclic andheterocyclic peptidomimetics (2005) J Med Chem, 48, pp. 5175-5190 
504 |a Stachel, S.J., Coburn, C.A., Steele, T.G., Conformationally biasedP3 amide replacvement of beta-secretase inhibitors (2006) Bioorg Med Chem Lett, 16, pp. 641-644 
504 |a Freslkos, J.N., Fobian, Y.M., Benson, T.E., Design of potentinhibitors of human beta-secretase. Part 2 (2007) Bioorg Med Chem Lett, 17, pp. 78-81 
504 |a Turner III, R.T., Hong, L., Koelsch, G., Ghosh, A.K., Tang, J., Structurallocations and functional roles of new subsites S5, S6, and S7 inmemapsin 2 (beta-secretase) (2005) Biochemistry, 44, pp. 105-112 
504 |a Hanessian, S., Yang, G., Rondeau, J.M., Neumann, U., Betschart C,Tintelnot-Blomley M. Structure-based design and synthesis of mac-roheterocyclic peptidomimetic inhibitors of the aspartic proteasebeta-site amyloid precursor protein cleaving enzyme (BACE) (2006) J Med Chem, 49, pp. 4544-4567 
504 |a Coburn, C.A., Stachel, S.J., Li, Y.M., Identification of a smallmolecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases (2004) J Med Chem, 47, pp. 6117-6119 
504 |a Stachel, S.J., Coburn, C.A., Steele, T.G., Structure-based design ofpotent and selective cell-permeable inhibitors of human beta-secretase (BACE-1) (2004) J Med Chem, 47, pp. 6447-6450 
504 |a Congreve, M., Aharony, D., Albert, J., Application of fragmentscreening by X-ray crystallography to the discovery of aminopyri-dines as inhibitors of beta-secretase (2007) J Med Chem, 50, pp. 1124-1132 
504 |a Edwards, P.D., Albert, J.S., Sylvester, M., Application of fragment-based lead generation to the discovery of novel, cyclicamidine beta-secretase inhibitors with nanomolar potency, cellularactivity, and high ligand efficiency (2007) J Med Chem, 50, pp. 5912-5925 
504 |a Cole, D.C., Manas, E.S., Stock, J.R., Acylguanidines as small-moleculae b-secretase inhibitors (2006) J Med Chem, 49, pp. 6158-6161 
504 |a Cole, D.C., Stock, J.R., Chopra, R., Acylguanidine inhibitors ofbeta-secretase: Optimization of the pyrrole ring substituents extend-ing into the S1 and S3 substrate binding pockets (2008) Bioorg MedChem Lett, 18, pp. 1063-1066 
504 |a Malamas, M.S., Erdei, J., Gunawan, I., Aminoimidazoles aspotent and selective human beta-secretase (BACE1) inhibitors (2009) J Med Chem, 52, pp. 6314-6323 
504 |a Malamas, M.S., Barnes, K., Johnson, M., Di-substituted pyridinylaminohydantoins as potent and highly selective human beta-secretase (BACE1) inhibitors (2010) Bioorg Med Chem, 18, pp. 630-639 
504 |a Nowak, P., Cole, D.C., Aulabaugh, A., Discovery and initialoptimization of 5,5'-disubstituted aminohydantoins as potent beta-secretase (BACE1) inhibitors (2010) Bioorg Med Chem Lett, 20, pp. 632-635 
504 |a Godemann, R., Madden, J., Krämer, J., Fragment-based discov-ery of BACE1 inhibitors using functional analysis (2009) Biochemistry, 48, pp. 10743-10751 
504 |a Wang, Y.S., Strickland, C., Voigt, J.H., Application of fragment-based NMR screening, X-ray crystallography, structure-based de-sign, and focused chemical library design to identify novel μMleads for the development of nM BACE-1 (-site APP cleaving en-zyme 1) inhibitors (2010) J Med Chem, 53, pp. 942-950 
504 |a Zhu, Z., Sun, Z.Y., Ye, Y., Discovery of cyclic acylguanidines ashighly potent and selective -site amyloid cleaving enzyme(BACE) inhibitors: Part I - Inhibitor design and validation (2010) J MedChem, 53, pp. 951-965 
520 3 |a Dual binding site acetylcholinesterase inhibitors have recently emerged as a new class of anti-Alzheimer agents with potential to positively modify the course of the disease. These compounds exhibit a multifunctional pharmacological profile arising from interaction with several biological targets involved upstream and downstream in the neurodegenerative cascade of Alzheimer's disease (AD). The primary target of these compounds is the enzyme acetylcholinesterase (AChE). Interaction of dual binding site AChE inhibitors with AChE results in a potent inhibitory activity of AChE and AChE-induced β-amyloid peptide (Aβ) aggregation. Some dual binding site AChE inhibitors take on added value a significant ability to additionally inhibit the enzymes butyrylcholinesterase and BACE-1, involved in the co-regulation of the hydrolysis of the neurotransmitter acetylcholine and in Aβ formation, respectively. The structural determinants which mediate the interaction of dual binding site AChE inhibitors with these three important enzymes for AD treatment are herein re-viewed. © 2010 Bentham Science Publishers Ltd.  |l eng 
593 |a Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain 
593 |a Laboratorio de Modelado Molecular, Química Inorgánica, Analítica y Química Física, INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria - Pabellón II 1piso, C1428EHA, Buenos Aires, Argentina 
593 |a Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain 
690 1 0 |a ACETYLCHOLINESTERASE 
690 1 0 |a BACE-1 
690 1 0 |a BUTYRYLCHOLINESTERASE 
690 1 0 |a DRUG-TARGET INTERACTIONS 
690 1 0 |a STRUCTURE-BASED DRUG DESIGN 
690 1 0 |a 8 ( 2,6 DIMETHYLMORPHOLINO)OCTYLCARBAMOYLESEROLINE 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ACETYLCHOLINESTERASE 
690 1 0 |a AMINOPYRIDINE DERIVATIVE 
690 1 0 |a AMYLOID BETA PROTEIN 
690 1 0 |a AP 2238 
690 1 0 |a BETA SECRETASE 
690 1 0 |a BETA SECRETASE INHIBITOR 
690 1 0 |a BUTYRYLCHOLINESTERASE 1 
690 1 0 |a CHOLINESTERASE 
690 1 0 |a CHOLINESTERASE INHIBITOR 
690 1 0 |a DECAMETHONIUM 
690 1 0 |a DONEPEZIL 
690 1 0 |a GALANTAMINE 
690 1 0 |a GALLAMINE 
690 1 0 |a HUPERZINE A 
690 1 0 |a HUPRINE X 
690 1 0 |a MF 268 
690 1 0 |a NEUROMUSCULAR DEPOLARIZING AGENT 
690 1 0 |a NF 595 
690 1 0 |a NOOTROPIC AGENT 
690 1 0 |a PEPTIDOMIMETIC AGENT 
690 1 0 |a PHYSOSTIGMINE 
690 1 0 |a PHYSOSTIGMINE DERIVATIVE 
690 1 0 |a PROPIDIUM IODIDE 
690 1 0 |a PYRIMIDINE DERIVATIVE 
690 1 0 |a SULFONAMIDE 
690 1 0 |a TACRINE 
690 1 0 |a THIOFLAVINE 
690 1 0 |a TRIAZOLE DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a UNINDEXED DRUG 
690 1 0 |a XANTHOSTIGMINE 
690 1 0 |a ALZHEIMER DISEASE 
690 1 0 |a ARTICLE 
690 1 0 |a CATALYSIS 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a CRYSTAL STRUCTURE 
690 1 0 |a DEGENERATIVE DISEASE 
690 1 0 |a DISEASE COURSE 
690 1 0 |a DRUG BINDING SITE 
690 1 0 |a DRUG INHIBITION 
690 1 0 |a DRUG POTENCY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a HUMAN 
690 1 0 |a HYDROLYSIS 
690 1 0 |a IC 50 
690 1 0 |a NEUROTRANSMISSION 
690 1 0 |a NONHUMAN 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a X RAY CRYSTALLOGRAPHY 
653 0 0 |a ap 2238; mf 268; nf 595 
700 1 |a Viayna, E. 
700 1 |a Arroyo, P. 
700 1 |a Bidon-Chanal, A. 
700 1 |a Blas, J.R. 
700 1 |a Muñoz-Torrero, D. 
700 1 |a Luque, F.J. 
773 0 |d Bentham Science Publishers B.V., 2010  |g v. 16  |h pp. 2818-2836  |k n. 25  |p Curr. Pharm. Des.  |x 13816128  |t Current Pharmaceutical Design 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957932175&doi=10.2174%2f138161210793176536&partnerID=40&md5=1942f30dc7111547bd7dc1e146e309b7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2174/138161210793176536  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13816128_v16_n25_p2818_Galdeano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13816128_v16_n25_p2818_Galdeano  |y Registro en la Biblioteca Digital 
961 |a paper_13816128_v16_n25_p2818_Galdeano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68531