PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition

The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, M.R
Otros Autores: Casabona, M.G, Anupama, V.N, Krishnakumar, B., Curutchet, G.A, Bernik, D.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11552caa a22018977a 4500
001 PAPER-7559
003 AR-BaUEN
005 20230518203719.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77956012821 
024 7 |2 cas  |a dimeticone, 32028-95-8, 68248-27-1, 9004-73-3, 9006-65-9; xanthan, 11138-66-2; Dimethylpolysiloxanes; Polysaccharides, Bacterial; Silanes; Sulfates; baysilon, 63148-62-9; tetraethoxysilane, 78-10-4; xanthan gum, 11138-66-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CSBBE 
100 1 |a Fernández, M.R. 
245 1 0 |a PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition 
260 |c 2010 
270 1 0 |m Bernik, D.L.; INQUIMAE: Ciudad Universitaria, Pabellón 2, C1428GHA Buenos Aires, Argentina; email: dbernik@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Michel, C., Jean, M., Coulon, S., Dictor, M.C., Delorm, F., Morin, D., Garrido, F., (2007) Appl. Microbiol. Biotechnol., 77, pp. 457-467 
504 |a Wang, Y., Fan, Y., Ji-Dong Gu, (2004) Int. Biodeterior. Biodegr., 53, pp. 93-101 
504 |a Strathmann, M., Griebe, T., Fleming, H.C., (2000) Appl. Microbiol. Biotechnol., 54, pp. 231-237 
504 |a Donlan, R.M., Costerton, J.W., (2002) Clin. Microbiol. Rev., 15, pp. 167-193 
504 |a Krishnan, S., Weinman, C.J., Ober, C.K., (2008) J. Mater. Chem., 18, pp. 3405-3413 
504 |a Tirrell, M., Kokkoli, E., Biesalski, M., (2002) Surf. Sci., 500, pp. 61-83 
504 |a Yun, M., Yeon, K., Park, J.S., Lee, C.H., Chun, J., Lim, D.J., (2006) Water Res., 40, pp. 45-52 
504 |a Pasmore, M., Todd, P.W., Pfiefer, B., Rhodes, M., Bowman, C.N., (2002) Biofouling, 18, pp. 65-71 
504 |a Wagner, M., Ivleva, N.P., Haisch, C., Niessner, R., Horn, H., (2009) Water Res., 43, pp. 63-76 
504 |a Zita, A., Hermansson, M., (1997) Appl. Environ. Microbiol., 63, pp. 1168-1170 
504 |a Donlan, R.M., (2002) Emerg. Infect. Dis., 8, pp. 881-890 
504 |a Hood, S.K., Zottola, E.A., (1995) Food Control, 6, pp. 9-18 
504 |a Parkar, S.G., Flint, S.H., Palmer, J.S., Brooks, J.D., (2001) J. Appl. Microbiol., 90, pp. 901-908 
504 |a Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.N., Hebraud, M., (2002) Appl. Environ. Microbiol., 68, pp. 728-737 
504 |a Lackner, S., Holmberg, M., Terada, A., Kingshott, P., Smets, B.F., (2009) Water Res., 43, pp. 3469-3478 
504 |a Krishnan, S., Ayothi, R., Hexemer, A., Finlay, J.A., Sohn, K.E., Perry, R., Ober, C.K., Fischer, D.A., (2006) Langmuir, 22, pp. 5075-5086 
504 |a Sohn, E.H., Kim, J., Kim, B.G., Kang, J.I., Chung, J.S., Ahn, J., Yoon, J., Lee, J.C., (2010) Colloids Surf. B: Biointerfaces, 77, pp. 191-199 
504 |a Satriano, C., Messina, G.M.L., Carnazza, S., Guglielmino, S., Marletta, G., (2006) Mater. Sci. Eng. C, 26, pp. 942-946 
504 |a Bertin, L., Majone, M., Di Gioia, D., Fava, F., (2001) J. Biotechnol., 87, pp. 161-177 
504 |a Mundargi, R., Patil, S.A., Aminabhavi, T.M., (2007) Carbohydr. Polym., 69. , 130 141 
504 |a Mandala, I.G., Bayas, E., (2004) Food Hydrocolloids, 18, pp. 191-201 
504 |a Makamba, H., Kim, J.H., Lim, K., Park, N., Hahn, J.H., (2003) Electrophoresis, 24, pp. 3607-3619 
504 |a Liu, J.K., Lee, M.L., (2006) Electrophoresis, 27, pp. 3533-3546 
504 |a Vilkner, T., Janasek, D., Manz, A., (2004) Anal. Chem., 76, pp. 3373-3385 
504 |a Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M., (1998) Anal. Chem., 70, pp. 4974-4984 
504 |a Xiao, D.Q., Zhang, H., Wirth, M., (2002) Langmuir, 18, pp. 9971-9976 
504 |a Sui, G.D., Wang, J.Y., Lee, C.C., Lu, W.X., Lee, S.P., Leyton, J.V., Wu, A.M., Tseng, H.R., (2006) Anal. Chem., 78, pp. 5543-5551 
504 |a Hellmich, W., Regtmeier, J., Duong, T.T., Ros, R., Anselmetti, D., Ros, A., (2005) Langmuir, 21, pp. 7551-7557 
504 |a Delamarche, E., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J., Donzel, C., (2001) Adv. Mater., 13, pp. 1164-1167 
504 |a Barbier, V., Tatoulian, M., Li, H., Arefi-Khonsari, F., Ajdari, A., Tabeling, P., (2006) Langmuir, 22, pp. 5230-5232 
504 |a He, Q.G., Liu, Z.C., Xiao, P.F., Liang, R.Q., He, N.Y., Lu, Z.H., (2003) Langmuir, 19, pp. 6982-6986 
504 |a Hu, S.W., Ren, X.Q., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N., (2002) Anal. Chem., 74, pp. 4117-4123 
504 |a Hu, S.W., Ren, X.Q., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N.L., (2004) Langmuir, 20, pp. 5569-5574 
504 |a Shin, Y.S., Cho, K., Lim, S.H., Chung, S., Park, S.J., Chung, C., Han, D.C., Chang, J.K., (2003) J. Micromech. Microeng., 13, pp. 768-774 
504 |a Pederson, K., (1990) Water Res., 24, pp. 239-243 
504 |a Chang, I., Gilbert, E.S., Eliashberg, N., Keasling, J.D., (2003) Microbiology, 149, pp. 2859-2871 
504 |a Hunt, S.M., Werner, E.M., Huang, B., Hamilton, M.A., Stewart, P.S., (2004) Appl. Environ. Microbiol., 70, pp. 7418-7425 
520 3 |a The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addition, PDMS materials can be cross-linked by copolymerization with other polymers. In the present work we have chosen two hydrophilic polymers: xanthan gum polysaccharide and tetraethoxysilane (TEOS). This versatile composition helps to modulate the interfacial hydrophobic/hydrophilic balance at the particle surface level and the roughness topology and pore size distribution, as revealed by scanning electron microscopy. Biofilm formation of a consortium isolated from a tannery effluent enriched in Sulphate Reducing Bacteria (SRB), and pure Acidithiobacillus ferrooxidans (AF) strains were assayed in three different bed particles synthesized with pure PDMS, PDMS-xanthan gum and PDMS-TEOS hybrids. Bacterial viability assays using confocal laser scanning fluorescence microscopy indicate that inclusion of hydrophilic groups on particle's surface significantly improves both cell adhesion and viability. © 2010 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X157, UBACyT 2008-2010 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2006-00568 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-200801-01210 
536 |a Detalles de la financiación: We thank Dr. Claudia Marchi and Dr. Roberto Fernández (University of Buenos Aires) for their invaluable help on the SEM and CLSM techniques, respectively. DLB and GAC are research members of the Carrera del Investigador Científico (CONICET, Argentina). Financial support was received from CONICET (PIP 112-200801-01210), University of Buenos Aires (UBACyT 2008-2010, project X157) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2006-00568). 
593 |a Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Argentina 
593 |a Environmental Technology, National Institute for Interdisciplinary Science, Technology (NIST, CSIR-India), Thiruvananthapuram 695019, India 
593 |a Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Provincia de Buenos Aires, Argentina 
690 1 0 |a BED MATERIAL 
690 1 0 |a BIOFILM 
690 1 0 |a CSLM 
690 1 0 |a PDMS 
690 1 0 |a SEM 
690 1 0 |a ACIDITHIOBACILLUS FERROOXIDANS 
690 1 0 |a BACTERIAL BIOFILM 
690 1 0 |a BACTERIAL VIABILITY 
690 1 0 |a BED MATERIALS 
690 1 0 |a BED PARTICLES 
690 1 0 |a BIOFILM FORMATION 
690 1 0 |a CONFOCAL LASER SCANNING 
690 1 0 |a CSLM 
690 1 0 |a HYDROPHILIC GROUPS 
690 1 0 |a HYDROPHILIC POLYMERS 
690 1 0 |a INTERCONNECTED POROUS STRUCTURE 
690 1 0 |a PARTICLE SURFACE 
690 1 0 |a PDMS 
690 1 0 |a POLYDIMETHYLSILOXANE PDMS 
690 1 0 |a POLYMER COMPOSITION 
690 1 0 |a POROUS PARTICLE 
690 1 0 |a SEM 
690 1 0 |a SULPHATE-REDUCING BACTERIA 
690 1 0 |a SURFACE ADSORPTION 
690 1 0 |a TANNERY EFFLUENT 
690 1 0 |a TETRAETHOXYSILANES 
690 1 0 |a XANTHAN GUM 
690 1 0 |a ADSORPTION 
690 1 0 |a BACTERIOLOGY 
690 1 0 |a BIOFILMS 
690 1 0 |a BIOFILTERS 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL IMMOBILIZATION 
690 1 0 |a FLUORESCENCE MICROSCOPY 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a MICROCHANNELS 
690 1 0 |a POLYMERS 
690 1 0 |a PORE SIZE 
690 1 0 |a POROUS MATERIALS 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SILICONES 
690 1 0 |a SURFACES 
690 1 0 |a DIMETICONE 
690 1 0 |a TETRAETHOXYSILANE 
690 1 0 |a XANTHAN 
690 1 0 |a ACIDITHIOBACILLUS FERROOXIDANS 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL MEMBRANE 
690 1 0 |a BACTERIAL STRAIN 
690 1 0 |a BACTERIAL VIABILITY 
690 1 0 |a BACTERIUM ADHERENCE 
690 1 0 |a BACTERIUM CULTURE 
690 1 0 |a BIOFILM 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a IMMOBILIZED CELL 
690 1 0 |a MEMBRANE FORMATION 
690 1 0 |a MEMBRANE PERMEABILITY 
690 1 0 |a NONHUMAN 
690 1 0 |a POLYMERIZATION 
690 1 0 |a POROSITY 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SULFATE REDUCING BACTERIUM 
690 1 0 |a SURFACE PROPERTY 
690 1 0 |a ACIDITHIOBACILLUS 
690 1 0 |a BACTERIA 
690 1 0 |a BACTERIAL ADHESION 
690 1 0 |a BIOFILMS 
690 1 0 |a CELLS, IMMOBILIZED 
690 1 0 |a DIMETHYLPOLYSILOXANES 
690 1 0 |a HYDROPHOBIC AND HYDROPHILIC INTERACTIONS 
690 1 0 |a MICROSCOPY, CONFOCAL 
690 1 0 |a MICROSCOPY, ELECTRON, SCANNING 
690 1 0 |a MICROSCOPY, FLUORESCENCE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a POLYSACCHARIDES, BACTERIAL 
690 1 0 |a POROSITY 
690 1 0 |a SILANES 
690 1 0 |a SULFATES 
690 1 0 |a SURFACE PROPERTIES 
690 1 0 |a ACIDITHIOBACILLUS FERROOXIDANS 
690 1 0 |a BACTERIA (MICROORGANISMS) 
650 1 7 |2 spines  |a ADHESION 
700 1 |a Casabona, M.G. 
700 1 |a Anupama, V.N. 
700 1 |a Krishnakumar, B. 
700 1 |a Curutchet, G.A. 
700 1 |a Bernik, D.L. 
773 0 |d 2010  |g v. 81  |h pp. 289-296  |k n. 1  |p Colloids Surf. B Biointerfaces  |x 09277765  |w (AR-BaUEN)CENRE-4236  |t Colloids and Surfaces B: Biointerfaces 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956012821&doi=10.1016%2fj.colsurfb.2010.07.018&partnerID=40&md5=8ef5a53186637a35697906f6680947e4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.colsurfb.2010.07.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09277765_v81_n1_p289_Fernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09277765_v81_n1_p289_Fernandez  |y Registro en la Biblioteca Digital 
961 |a paper_09277765_v81_n1_p289_Fernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68512