Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions

We consider the unique positive solution to the equation Δu = u r in ,where r > 1 and Ω is a smooth bounded domain of ℝN, under one of the boundary conditions u = λ, ∂u/∂ν = λ, ∂u/∂ν = λu or ∂u/∂ν = λu - uq on ∂, Ωq > 1. The main interest is determining the exact layer behavior of this...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: García-Melián, J.
Otros Autores: Rossi, J.D, De Lis, J.C.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05012caa a22005417a 4500
001 PAPER-7547
003 AR-BaUEN
005 20230518203717.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77958571345 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a García-Melián, J. 
245 1 0 |a Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions 
260 |c 2010 
270 1 0 |m García-Melián, J.; Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271-La Laguna, Spain; email: jjgarmel@ull.es 
506 |2 openaire  |e Política editorial 
504 |a Bandle, C., Marcus, M., Large' solutions of semilinear elliptic equations: Existence,uniqueness and asymptoticbehaviour (1992) J.Anal.Math., 58, pp. 9-24 
504 |a Del Pino, M., Letelier, R., The influence of domain geometry in boundary blow-up elliptic problems (2002) Nonlin. Anal., 48, pp. 897-904 
504 |a DiBenedetto, E., C1+α local regularity of weak solutions of degenerate elliptic equations (1983) Nonlin. Anal., 7, pp. 827-850 
504 |a D́iaz, G., Letelier, R., Explosive solutions of quasilinear elliptic equations: Existence and uniqueness (1993) Nonlin. Anal., 20, pp. 97-125 
504 |a Garćia-Melián, J., Letelier-Albornoz, R., Sabina De Lis, J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blowup (2001) Proc. Amer. Math. Soc., 129, pp. 3593-3602 
504 |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., A bifurcation problem governed by the boundary condition I (2007) Nonlin. Diff. Equ. Appl. NoDEA, 14, pp. 499-525 
504 |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., A bifurcation problem governed by the boundary condition II (2007) Proc. London Math. Soc., 94, pp. 1-25 
504 |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions (2009) Comm. Contemp. Math., 11, pp. 585-613 
504 |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., An elliptic system with bifurcation parameters on the boundary condition (2009) J. Diff. Equ., 247, pp. 779-810 
504 |a Keller, J.B., On |solutions of δu = f(u) (1957) Comm. Pure Appl. Math., 10, pp. 503-510 
504 |a Lieberman, G., Boundary regularity for solutions of degenerate elliptic equations (1988) Nonlin. Anal., 12, pp. 1203-1219 
504 |a Lindqvist, P., On the equation div (|δu|p-2δu)+λ|u|p-2u = 0 (1990) Proc. American Math. Soc., 109, pp. 157-164 
504 |a Matero, J., Quasilinear elliptic equations with boundary blow-up (1996) J. Anal. Math., 69, pp. 229-247 
504 |a Tolksdorf, P., Regularity for a more general class of quasi-linear elliptic equations (1984) J. Diff. Equ., 51, pp. 126-150 
504 |a Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12, pp. 191-202 
520 3 |a We consider the unique positive solution to the equation Δu = u r in ,where r > 1 and Ω is a smooth bounded domain of ℝN, under one of the boundary conditions u = λ, ∂u/∂ν = λ, ∂u/∂ν = λu or ∂u/∂ν = λu - uq on ∂, Ωq > 1. The main interest is determining the exact layer behavior of this solution near ∂ in terms of the parameter λ as λ → ∞ Our analysis is completed with the study of the same type of problems involving the p-Laplacian operator. © European Mathematical Society.  |l eng 
593 |a Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271-La Laguna, Spain 
593 |a Instituto Universitario de Estudios Avanzados (IUdEA) en Física At'omica, Facultad de Física, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38203-La Laguna, Spain 
593 |a Departamento deMatemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina 
690 1 0 |a BOUNDARY LAYERS 
690 1 0 |a DEPENDENCE ON PARAMETERS 
690 1 0 |a ELLIPTIC EQUATIONS 
700 1 |a Rossi, J.D. 
700 1 |a De Lis, J.C.S. 
773 0 |d 2010  |g v. 29  |h pp. 451-467  |k n. 4  |p Z. Anal. Anwend.  |x 02322064  |t Zeitschrift fur Analysis und ihre Anwendung 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958571345&doi=10.4171%2fZAA%2f1418&partnerID=40&md5=9d84d67095eeaa5d66eda15b5109ce12  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4171/ZAA/1418  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02322064_v29_n4_p451_GarciaMelian  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02322064_v29_n4_p451_GarciaMelian  |y Registro en la Biblioteca Digital 
961 |a paper_02322064_v29_n4_p451_GarciaMelian  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68500