Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions
We consider the unique positive solution to the equation Δu = u r in ,where r > 1 and Ω is a smooth bounded domain of ℝN, under one of the boundary conditions u = λ, ∂u/∂ν = λ, ∂u/∂ν = λu or ∂u/∂ν = λu - uq on ∂, Ωq > 1. The main interest is determining the exact layer behavior of this...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05012caa a22005417a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7547 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203717.0 | ||
| 008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-77958571345 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a García-Melián, J. | |
| 245 | 1 | 0 | |a Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions |
| 260 | |c 2010 | ||
| 270 | 1 | 0 | |m García-Melián, J.; Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271-La Laguna, Spain; email: jjgarmel@ull.es |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bandle, C., Marcus, M., Large' solutions of semilinear elliptic equations: Existence,uniqueness and asymptoticbehaviour (1992) J.Anal.Math., 58, pp. 9-24 | ||
| 504 | |a Del Pino, M., Letelier, R., The influence of domain geometry in boundary blow-up elliptic problems (2002) Nonlin. Anal., 48, pp. 897-904 | ||
| 504 | |a DiBenedetto, E., C1+α local regularity of weak solutions of degenerate elliptic equations (1983) Nonlin. Anal., 7, pp. 827-850 | ||
| 504 | |a D́iaz, G., Letelier, R., Explosive solutions of quasilinear elliptic equations: Existence and uniqueness (1993) Nonlin. Anal., 20, pp. 97-125 | ||
| 504 | |a Garćia-Melián, J., Letelier-Albornoz, R., Sabina De Lis, J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blowup (2001) Proc. Amer. Math. Soc., 129, pp. 3593-3602 | ||
| 504 | |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., A bifurcation problem governed by the boundary condition I (2007) Nonlin. Diff. Equ. Appl. NoDEA, 14, pp. 499-525 | ||
| 504 | |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., A bifurcation problem governed by the boundary condition II (2007) Proc. London Math. Soc., 94, pp. 1-25 | ||
| 504 | |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions (2009) Comm. Contemp. Math., 11, pp. 585-613 | ||
| 504 | |a Garćia-Melián, J., Rossi, J., Sabina De Lis, J., An elliptic system with bifurcation parameters on the boundary condition (2009) J. Diff. Equ., 247, pp. 779-810 | ||
| 504 | |a Keller, J.B., On |solutions of δu = f(u) (1957) Comm. Pure Appl. Math., 10, pp. 503-510 | ||
| 504 | |a Lieberman, G., Boundary regularity for solutions of degenerate elliptic equations (1988) Nonlin. Anal., 12, pp. 1203-1219 | ||
| 504 | |a Lindqvist, P., On the equation div (|δu|p-2δu)+λ|u|p-2u = 0 (1990) Proc. American Math. Soc., 109, pp. 157-164 | ||
| 504 | |a Matero, J., Quasilinear elliptic equations with boundary blow-up (1996) J. Anal. Math., 69, pp. 229-247 | ||
| 504 | |a Tolksdorf, P., Regularity for a more general class of quasi-linear elliptic equations (1984) J. Diff. Equ., 51, pp. 126-150 | ||
| 504 | |a Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12, pp. 191-202 | ||
| 520 | 3 | |a We consider the unique positive solution to the equation Δu = u r in ,where r > 1 and Ω is a smooth bounded domain of ℝN, under one of the boundary conditions u = λ, ∂u/∂ν = λ, ∂u/∂ν = λu or ∂u/∂ν = λu - uq on ∂, Ωq > 1. The main interest is determining the exact layer behavior of this solution near ∂ in terms of the parameter λ as λ → ∞ Our analysis is completed with the study of the same type of problems involving the p-Laplacian operator. © European Mathematical Society. |l eng | |
| 593 | |a Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271-La Laguna, Spain | ||
| 593 | |a Instituto Universitario de Estudios Avanzados (IUdEA) en Física At'omica, Facultad de Física, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38203-La Laguna, Spain | ||
| 593 | |a Departamento deMatemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a BOUNDARY LAYERS |
| 690 | 1 | 0 | |a DEPENDENCE ON PARAMETERS |
| 690 | 1 | 0 | |a ELLIPTIC EQUATIONS |
| 700 | 1 | |a Rossi, J.D. | |
| 700 | 1 | |a De Lis, J.C.S. | |
| 773 | 0 | |d 2010 |g v. 29 |h pp. 451-467 |k n. 4 |p Z. Anal. Anwend. |x 02322064 |t Zeitschrift fur Analysis und ihre Anwendung | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958571345&doi=10.4171%2fZAA%2f1418&partnerID=40&md5=9d84d67095eeaa5d66eda15b5109ce12 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.4171/ZAA/1418 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02322064_v29_n4_p451_GarciaMelian |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02322064_v29_n4_p451_GarciaMelian |y Registro en la Biblioteca Digital |
| 961 | |a paper_02322064_v29_n4_p451_GarciaMelian |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 68500 | ||