Bifurcation sets of the self-consistent flow in generalized SU(2) models

We analyze the possible bifurcations of the stationary points of the self-consistent flow on the Bloch sphere. We propose a generalized SU(2) model Hamiltonian for which, by means of a geometrically simple classification, we find the topologically invariant regions of the mean field flow in the spac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vignolo, C.E
Otros Autores: Jezek, D.M, Hernandez, E.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1988
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03616caa a22004817a 4500
001 PAPER-742
003 AR-BaUEN
005 20230518203004.0
008 190411s1988 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-35949008703 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Vignolo, C.E. 
245 1 0 |a Bifurcation sets of the self-consistent flow in generalized SU(2) models 
260 |c 1988 
270 1 0 |m Vignolo, C.E.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Abraham, R., Mardsden, J.E., (1978) Foundations of Mechanics, , Benjamin, Reading, Mass 
504 |a Gilmore, R., (1978) Catastrophe Theory for Scientists and Engineers, , Wiley, New York 
504 |a Feng, Gilmore, R., (1982) Phys. Rev. C, 26, p. 1244 
504 |a Da Hsuan Feng and R. Gilmore (unpublished); Jezek, D.M., Hernández, E.S., Solari, H.G., (1986) Phys. Rev. C, 34, p. 297 
504 |a Jezek, D.M., Hernández, E.S., (1987) Phys. Rev. C, 35, p. 1555 
504 |a Kan, K.K., Lichtner, P.C., Dworzecka, M., Griffin, J.J., (1980) Phys. Rev. C, 21, p. 21 
504 |a Rowe, D.Y., Ryman, A., Rosensteel, G., (1980) Phys. Rev. A, 22, p. 2362 
504 |a Dirac, D.A.M., (1930) Proc. Cambridge Philos. Soc., 26, p. 376 
504 |a Lipkin, H., Meshkov, N., Glick, A., (1965) Nucl. Phys., 62, p. 188 
504 |a Gilmore, R., (1974) Rev. Mexicana Fis., 23, p. 143 
504 |a Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974); Krieger, S.J., (1977) Nucl. Phys., 276 A, p. 12 
504 |a Solari, H.G., Hernández, E.S., (1983) Phys. Rev. C, 28, p. 2472 
504 |a Solari, H.G., Hernández, E.S., (1985) Phys. Rev. C, 32, p. 462 
504 |a Arnold, V.I., (1973) Ordinary Differential Equations, , MIT Press, Cambridge 
520 3 |a We analyze the possible bifurcations of the stationary points of the self-consistent flow on the Bloch sphere. We propose a generalized SU(2) model Hamiltonian for which, by means of a geometrically simple classification, we find the topologically invariant regions of the mean field flow in the space of interaction parameters. The borders of these regions are the bifurcation sets corresponding to general nonthermodynamic phase transitions. When these separatrices are crossed, the mean field flow undergoes a qualitative change. We also examine the consequences of the catastrophical configurations on the exact dynamics in quasispin space. © 1988 The American Physical Society.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
700 1 |a Jezek, D.M. 
700 1 |a Hernandez, E.S. 
773 0 |d 1988  |g v. 38  |h pp. 506-513  |k n. 1  |x 05562813  |w (AR-BaUEN)CENRE-385  |t Physical Review C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35949008703&doi=10.1103%2fPhysRevC.38.506&partnerID=40&md5=29f1f43632b304397ab764401c30cb13  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevC.38.506  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_05562813_v38_n1_p506_Vignolo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_05562813_v38_n1_p506_Vignolo  |y Registro en la Biblioteca Digital 
961 |a paper_05562813_v38_n1_p506_Vignolo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 61695