Detecting influential observations in principal components and common principal components

Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square ap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boente, G.
Otros Autores: Pires, A.M, Rodrigues, I.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08000caa a22007817a 4500
001 PAPER-7411
003 AR-BaUEN
005 20230518203709.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77955367628 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CSDAD 
100 1 |a Boente, G. 
245 1 0 |a Detecting influential observations in principal components and common principal components 
260 |b Elsevier B.V.  |c 2010 
270 1 0 |m Boente, G.; Instituto de Cálculo, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina; email: gboente@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Becker, C., Gather, U., The masking breakdown point of multivariate outlier identification rules (1999) Journal of the American Statistical Association, 94, pp. 947-955 
504 |a Becker, C., Gather, U., The largest nonidentifiable outlier: A comparison of multivariate simultaneous outlier identification rules (2001) Computational Statistics and Data Analysis, 36 (1), pp. 119-127. , DOI 10.1016/S0167-9473(00)00032-3, PII S0167947300000323 
504 |a Boente, G., Pires, A.M., Rodrigues, I.M., Influence functions and outlier detection under the common principal components model: A robust approach (2002) Biometrika, 89 (4), pp. 861-875. , DOI 10.1093/biomet/89.4.861 
504 |a Boente, G., Pires, A.M., Rodrigues, I.M., General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study (2006) Journal of Multivariate Analysis, 97 (1), pp. 124-147. , DOI 10.1016/j.jmva.2004.11.007, PII S0047259X04002313 
504 |a Chen, T., Martin, E., Montague, G., Robust probabilistic PCA with missing data and contribution analysis for outlier detection (2009) Computational Statistics and Data Analysis, 53, pp. 3706-3716 
504 |a Critchley, F., Influence in principal components analysis (1985) Biometrika, 72, pp. 627-636 
504 |a Croux, C., Haesbroeck, G., Empirical influence functions for robust principal component analysis (1999) Proceedings of the Statistical Computing Section of the American Statistical Association, pp. 201-206. , Am. Statist. Assoc., Alexandria, VA 
504 |a Croux, C., Haesbroeck, G., Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies (2000) Biometrika, 87, pp. 603-618 
504 |a Donoho, D.L., (1982) Breakdown Properties of Multivariate Location Estimators, , Ph.D. Thesis. Harvard University (in English) 
504 |a Filzmoser, P., Maronna, R., Werner, M., Outlier identification in high dimensions (2008) Computational Statistics and Data Analysis, 52, pp. 1694-1711 
504 |a Flury, B.N., Common principal components in k groups (1984) Journal of the American Statistical Association, 79, pp. 892-898 
504 |a Flury, B.N., (1988) Common Principal Components and Related Multivariate Models, , John Wiley, New York 
504 |a Hardin, J., Rocke, D., The distribution of robust distances (2005) Journal of Computational and Graphical Statistics, 14, pp. 928-946 
504 |a Hubert, M., Rousseeuw, P., Verdonck, T., Robust PCA for skewed data and its outlier map (2009) Computational Statistics and Data Analysis, 53, pp. 2264-2274 
504 |a Oliveira, I., Variedades de castanheiros em Trás-os-Montes (1995) Uma Análise em Componentes Principais Dos Caracteres Morfológicos da Folha, , Master Thesis. Universidade de Lisboa (in Portuguese) 
504 |a Pison, G., Rousseeuw, P.J., Filzmoser, P., Croux, C., A robust version of principal factor analysis (2000) Compstat: Proceedings in Computational Statistics, pp. 385-390. , Bethlehem, J., van der Heijden, P. (Eds.), Physica-Verlag, Heidelberg 
504 |a Rousseeuw, P.J., Multivariate estimation with high breakdown point (1985) Mathematical Statistics and Applications, B, pp. 283-297. , Grossmann, W., et al. (Eds.), Akadémiai Kiadó, Budapest 
504 |a Rousseeuw, P.J., Van Zomeren, B.C., Unmasking multivariate outliers and leverage points (1990) Journal of the American Statistical Association, 85, pp. 633-639 
504 |a Rousseeuw, P.J., Yohai, V.J., Robust regression by means of S-estimators (1984) Lecture Notes in Statistics, 26, pp. 256-272. , Franke, J., et al. (Eds.), Robust and Nonlinear Time Series Analysis. In: Springer-Verlag, New York 
504 |a Serneels, S., Verdonck, T., Principal component analysis for data containing outliers and missing elements (2008) Computational Statistics and Data Analysis, 52 (3), pp. 1712-1727. , DOI 10.1016/j.csda.2007.05.024, PII S0167947307002241 
504 |a Shi, L., Local influence in principal components analysis (1997) Biometrika, 84, pp. 175-186 
504 |a Stahel, W.A., (1981) Robust Estimation: Infinitesimal Optimality and Covariance Matrix Estimators, , Ph.D. Thesis. ETH, Zurich (in German) 
520 3 |a Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (like the minimum volume ellipsoid, the minimum covariance determinant and the S-estimators) is not adequate for detecting atypical observations in small samples from the normal distribution. In the multi-population setting and under a common principal components model, aggregated measures based on standardized empirical influence functions are used to detect observations with a significant impact on the estimators. As in the one-population setting, the cutoff values obtained from the asymptotic distribution of those aggregated measures are not adequate for small samples. More appropriate cutoff values, adapted to the sample sizes, can be computed by using a cross-validation approach. Cutoff values obtained from a Monte Carlo study using S-estimators are provided for illustration. A real data set is also analyzed. © 2010 Elsevier B.V. All rights reserved.  |l eng 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a CONICET, Argentina 
593 |a Departamento de Matemática and CEMAT, Instituto Superior Técnico, Technical University of Lisbon (TULisbon), Lisboa, Portugal 
690 1 0 |a COMMON PRINCIPAL COMPONENTS 
690 1 0 |a DETECTION OF OUTLIERS 
690 1 0 |a INFLUENCE FUNCTIONS 
690 1 0 |a ROBUST ESTIMATION 
690 1 0 |a MULTIVARIABLE SYSTEMS 
690 1 0 |a NORMAL DISTRIBUTION 
690 1 0 |a ASYMPTOTIC DISTRIBUTIONS 
690 1 0 |a INFLUENCE FUNCTIONS 
690 1 0 |a INFLUENTIAL OBSERVATIONS 
690 1 0 |a MAHALANOBIS DISTANCES 
690 1 0 |a MINIMUM COVARIANCE DETERMINANT 
690 1 0 |a MINIMUM VOLUME ELLIPSOIDS 
690 1 0 |a PRINCIPAL COMPONENTS 
690 1 0 |a ROBUST ESTIMATION 
690 1 0 |a METHOD OF MOMENTS 
700 1 |a Pires, A.M. 
700 1 |a Rodrigues, I.M. 
773 0 |d Elsevier B.V., 2010  |g v. 54  |h pp. 2967-2975  |k n. 12  |p Comput. Stat. Data Anal.  |x 01679473  |w (AR-BaUEN)CENRE-4276  |t Computational Statistics and Data Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955367628&doi=10.1016%2fj.csda.2010.01.001&partnerID=40&md5=d388c82935c6157d43bf04abdc0f60d0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.csda.2010.01.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01679473_v54_n12_p2967_Boente  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01679473_v54_n12_p2967_Boente  |y Registro en la Biblioteca Digital 
961 |a paper_01679473_v54_n12_p2967_Boente  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68364