Laser printing single gold nanoparticles

Current colloidal synthesis is able to produce an extensive spectrum of nanoparticles with unique optoelectronic, magnetic, and catalytic properties. In order to exploit them in nanoscale devices, flexible methods are needed for the controlled integration of nanoparticles on surfaces with few-nanome...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Urban, A.S
Otros Autores: Lutich, A.A, Stefani, F.D, Feldmann, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07304caa a22008657a 4500
001 PAPER-7394
003 AR-BaUEN
005 20230518203708.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-78650117290 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Urban, A.S. 
245 1 0 |a Laser printing single gold nanoparticles 
260 |c 2010 
270 1 0 |m Lutich, A. A.; Photonics and Optoelectronics Group, Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany; email: andrey.lutich@physik.lmu.de 
506 |2 openaire  |e Política editorial 
504 |a Kraus, T., Nanoparticle printing with single-particle resolution (2007) Nat. Nanotechnol., 2, pp. 570-576 
504 |a Saavedra, H.M., Hybrid strategies in nanolithography (2010) Rep. Prog. Phys., 73, p. 036501 
504 |a Su, G., Yan, B., Nano-combinatorial chemistry strategy for nanotechnology research (2010) J. Comb. Chem., 12, pp. 215-221 
504 |a Chan, E.M., Xu, C., Mao, A.W., Han, G., Owen, J.S., Cohen, B.E., Milliron, D.J., Reproducible, High-Throughput Synthesis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space (2010) Nano Lett., 10, pp. 1874-1885 
504 |a Hung, A.M., Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami (2010) Nat. Nanotechnol., 5, pp. 121-126 
504 |a Lee, T.I., Choi, W.J., Moon, K.J., Choi, J.H., Kar, J.P., Das, S.N., Kim, Y.S., Myoung, J.M., Programmable Direct-Printing Nanowire Electronic Components (2010) Nano Lett., 10, pp. 1016-1021 
504 |a Shin, C., Single nanoparticle alignment by atomic force microscopy indentation (2009) Appl. Phys. Lett., 94, p. 163107 
504 |a Hoogenboom, J.P., Patterning surfaces with colloidal particles using optical tweezers (2002) Appl. Phys. Lett., 80, pp. 4828-4830 
504 |a Sönnichsen, C., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles (2005) Nat. Biotechnol., 23, pp. 741-745 
504 |a Wang, H., Levin, C.S., Halas, N.J., Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates (2005) J. Am. Chem. Soc., 127, pp. 14992-14993 
504 |a Mayilo, S., Kloster, M.A., Wunderlich, M., Lutich, A., Klar, T.A., Nichtl, A., Kürzinger, K., Feldmann, J., Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T (2009) Nano Lett., 9, pp. 4558-4563 
504 |a Urban, A.S., Fedoruk, M., Horton, M.R., Rädler, A.S., Stefani, F.D., Feldmann, J., Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles (2009) Nano Lett., 9, pp. 2903-2908 
504 |a Israelachvili, J.N., (1991) Intermolecular and Surface Forces, , Elsevier Science: Amsterdam 
504 |a Ashkin, A., Optical trapping and manipulation of neutral particles using lasers (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 4853-4860 
504 |a Svoboda, K., Block, S.M., Optical trapping of metallic Rayleigh particles (1994) Opt. Lett., 19, pp. 930-932 
504 |a Hansen, P.M., Bhatia, V.K., Harrit, N., Oddershede, L., Expanding the Optical Trapping Range of Gold Nanoparticles (2005) Nano Lett., 5, pp. 1937-1942 
504 |a Toussaint, K.C., Plasmon resonance-based optical trapping of single and multiple Au nanoparticles (2007) Opt. Express, 15, pp. 12017-12029 
504 |a Arias-González, J.R., Nieto-Vesperinas, M., Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions (2003) J. Opt. Soc. Am. A, 20, pp. 1201-1209 
504 |a Dienerowitz, M., Mazilu, M., Dholakia, K., Optical manipulation of nanoparticles: A review (2008) J. Nanophoton., 2, p. 021875 
504 |a Caruso, F., Lichtenfeld, H., Donath, E., Möhwald, H., Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids (1999) Macromolecules, 32, pp. 2317-2328 
504 |a Bos, R., Van Der Mei, H.C., Busscher, H.J., Physico-chemistry of initial microbial adhesive interactions - Its mechanisms and methods for study (1999) FEMS Microbiol. Rev., 23, pp. 179-230 
504 |a Agayan, R.R., Optical trapping near resonance absorption (2002) Appl. Opt., 41, pp. 2318-2327 
520 3 |a Current colloidal synthesis is able to produce an extensive spectrum of nanoparticles with unique optoelectronic, magnetic, and catalytic properties. In order to exploit them in nanoscale devices, flexible methods are needed for the controlled integration of nanoparticles on surfaces with few-nanometer precision. Current technologies usually involve a combination of molecular self-assembly with surface patterning by diverse lithographic methods like UV, dip-pen, or microcontact printing.1,2 Here we demonstrate the direct laser printing of individual colloidal nanoparticles by using optical forces for positioning and the van der Waals attraction for binding them to the substrate. As a proof-of-concept, we print single spherical gold nanoparticles with a positioning precision of 50 nm. By analyzing the printing mechanism, we identify the key physical parameters controlling the method, which has the potential for the production of nanoscale devices and circuits with distinct nanoparticles. © 2010 American Chemical Society.  |l eng 
593 |a Photonics and Optoelectronics Group, Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
690 1 0 |a DIRECTED ASSEMBLY 
690 1 0 |a GOLD NANOPARTICLE 
690 1 0 |a NANOCIRCUIT 
690 1 0 |a NANOPATTERNING 
690 1 0 |a OPTICAL FORCE 
690 1 0 |a PATTERNING 
690 1 0 |a SINGLE NANOPARTICLE 
690 1 0 |a DIRECTED ASSEMBLY 
690 1 0 |a GOLD NANOPARTICLE 
690 1 0 |a NANOCIRCUIT 
690 1 0 |a NANOPATTERNING 
690 1 0 |a OPTICAL FORCE 
690 1 0 |a PATTERNING 
690 1 0 |a SINGLE NANOPARTICLE 
690 1 0 |a ELECTRON DEVICE MANUFACTURE 
690 1 0 |a GOLD 
690 1 0 |a NANOMAGNETICS 
690 1 0 |a NANOSTRUCTURED MATERIALS 
690 1 0 |a PRINTING 
690 1 0 |a PRINTING PRESSES 
690 1 0 |a SURFACE PLASMON RESONANCE 
690 1 0 |a VAN DER WAALS FORCES 
690 1 0 |a NANOPARTICLES 
700 1 |a Lutich, A.A. 
700 1 |a Stefani, F.D. 
700 1 |a Feldmann, J. 
773 0 |d 2010  |g v. 10  |h pp. 4794-4798  |k n. 12  |p Nano Lett.  |x 15306984  |t Nano Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650117290&doi=10.1021%2fnl1030425&partnerID=40&md5=e038d3f368f6b318a64f1b2b71e97f4b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/nl1030425  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15306984_v10_n12_p4794_Urban  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v10_n12_p4794_Urban  |y Registro en la Biblioteca Digital 
961 |a paper_15306984_v10_n12_p4794_Urban  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68347