Laser printing single gold nanoparticles
Current colloidal synthesis is able to produce an extensive spectrum of nanoparticles with unique optoelectronic, magnetic, and catalytic properties. In order to exploit them in nanoscale devices, flexible methods are needed for the controlled integration of nanoparticles on surfaces with few-nanome...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07304caa a22008657a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7394 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203708.0 | ||
| 008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-78650117290 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Urban, A.S. | |
| 245 | 1 | 0 | |a Laser printing single gold nanoparticles |
| 260 | |c 2010 | ||
| 270 | 1 | 0 | |m Lutich, A. A.; Photonics and Optoelectronics Group, Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany; email: andrey.lutich@physik.lmu.de |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Kraus, T., Nanoparticle printing with single-particle resolution (2007) Nat. Nanotechnol., 2, pp. 570-576 | ||
| 504 | |a Saavedra, H.M., Hybrid strategies in nanolithography (2010) Rep. Prog. Phys., 73, p. 036501 | ||
| 504 | |a Su, G., Yan, B., Nano-combinatorial chemistry strategy for nanotechnology research (2010) J. Comb. Chem., 12, pp. 215-221 | ||
| 504 | |a Chan, E.M., Xu, C., Mao, A.W., Han, G., Owen, J.S., Cohen, B.E., Milliron, D.J., Reproducible, High-Throughput Synthesis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space (2010) Nano Lett., 10, pp. 1874-1885 | ||
| 504 | |a Hung, A.M., Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami (2010) Nat. Nanotechnol., 5, pp. 121-126 | ||
| 504 | |a Lee, T.I., Choi, W.J., Moon, K.J., Choi, J.H., Kar, J.P., Das, S.N., Kim, Y.S., Myoung, J.M., Programmable Direct-Printing Nanowire Electronic Components (2010) Nano Lett., 10, pp. 1016-1021 | ||
| 504 | |a Shin, C., Single nanoparticle alignment by atomic force microscopy indentation (2009) Appl. Phys. Lett., 94, p. 163107 | ||
| 504 | |a Hoogenboom, J.P., Patterning surfaces with colloidal particles using optical tweezers (2002) Appl. Phys. Lett., 80, pp. 4828-4830 | ||
| 504 | |a Sönnichsen, C., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles (2005) Nat. Biotechnol., 23, pp. 741-745 | ||
| 504 | |a Wang, H., Levin, C.S., Halas, N.J., Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates (2005) J. Am. Chem. Soc., 127, pp. 14992-14993 | ||
| 504 | |a Mayilo, S., Kloster, M.A., Wunderlich, M., Lutich, A., Klar, T.A., Nichtl, A., Kürzinger, K., Feldmann, J., Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T (2009) Nano Lett., 9, pp. 4558-4563 | ||
| 504 | |a Urban, A.S., Fedoruk, M., Horton, M.R., Rädler, A.S., Stefani, F.D., Feldmann, J., Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles (2009) Nano Lett., 9, pp. 2903-2908 | ||
| 504 | |a Israelachvili, J.N., (1991) Intermolecular and Surface Forces, , Elsevier Science: Amsterdam | ||
| 504 | |a Ashkin, A., Optical trapping and manipulation of neutral particles using lasers (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 4853-4860 | ||
| 504 | |a Svoboda, K., Block, S.M., Optical trapping of metallic Rayleigh particles (1994) Opt. Lett., 19, pp. 930-932 | ||
| 504 | |a Hansen, P.M., Bhatia, V.K., Harrit, N., Oddershede, L., Expanding the Optical Trapping Range of Gold Nanoparticles (2005) Nano Lett., 5, pp. 1937-1942 | ||
| 504 | |a Toussaint, K.C., Plasmon resonance-based optical trapping of single and multiple Au nanoparticles (2007) Opt. Express, 15, pp. 12017-12029 | ||
| 504 | |a Arias-González, J.R., Nieto-Vesperinas, M., Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions (2003) J. Opt. Soc. Am. A, 20, pp. 1201-1209 | ||
| 504 | |a Dienerowitz, M., Mazilu, M., Dholakia, K., Optical manipulation of nanoparticles: A review (2008) J. Nanophoton., 2, p. 021875 | ||
| 504 | |a Caruso, F., Lichtenfeld, H., Donath, E., Möhwald, H., Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids (1999) Macromolecules, 32, pp. 2317-2328 | ||
| 504 | |a Bos, R., Van Der Mei, H.C., Busscher, H.J., Physico-chemistry of initial microbial adhesive interactions - Its mechanisms and methods for study (1999) FEMS Microbiol. Rev., 23, pp. 179-230 | ||
| 504 | |a Agayan, R.R., Optical trapping near resonance absorption (2002) Appl. Opt., 41, pp. 2318-2327 | ||
| 520 | 3 | |a Current colloidal synthesis is able to produce an extensive spectrum of nanoparticles with unique optoelectronic, magnetic, and catalytic properties. In order to exploit them in nanoscale devices, flexible methods are needed for the controlled integration of nanoparticles on surfaces with few-nanometer precision. Current technologies usually involve a combination of molecular self-assembly with surface patterning by diverse lithographic methods like UV, dip-pen, or microcontact printing.1,2 Here we demonstrate the direct laser printing of individual colloidal nanoparticles by using optical forces for positioning and the van der Waals attraction for binding them to the substrate. As a proof-of-concept, we print single spherical gold nanoparticles with a positioning precision of 50 nm. By analyzing the printing mechanism, we identify the key physical parameters controlling the method, which has the potential for the production of nanoscale devices and circuits with distinct nanoparticles. © 2010 American Chemical Society. |l eng | |
| 593 | |a Photonics and Optoelectronics Group, Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany | ||
| 593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a DIRECTED ASSEMBLY |
| 690 | 1 | 0 | |a GOLD NANOPARTICLE |
| 690 | 1 | 0 | |a NANOCIRCUIT |
| 690 | 1 | 0 | |a NANOPATTERNING |
| 690 | 1 | 0 | |a OPTICAL FORCE |
| 690 | 1 | 0 | |a PATTERNING |
| 690 | 1 | 0 | |a SINGLE NANOPARTICLE |
| 690 | 1 | 0 | |a DIRECTED ASSEMBLY |
| 690 | 1 | 0 | |a GOLD NANOPARTICLE |
| 690 | 1 | 0 | |a NANOCIRCUIT |
| 690 | 1 | 0 | |a NANOPATTERNING |
| 690 | 1 | 0 | |a OPTICAL FORCE |
| 690 | 1 | 0 | |a PATTERNING |
| 690 | 1 | 0 | |a SINGLE NANOPARTICLE |
| 690 | 1 | 0 | |a ELECTRON DEVICE MANUFACTURE |
| 690 | 1 | 0 | |a GOLD |
| 690 | 1 | 0 | |a NANOMAGNETICS |
| 690 | 1 | 0 | |a NANOSTRUCTURED MATERIALS |
| 690 | 1 | 0 | |a PRINTING |
| 690 | 1 | 0 | |a PRINTING PRESSES |
| 690 | 1 | 0 | |a SURFACE PLASMON RESONANCE |
| 690 | 1 | 0 | |a VAN DER WAALS FORCES |
| 690 | 1 | 0 | |a NANOPARTICLES |
| 700 | 1 | |a Lutich, A.A. | |
| 700 | 1 | |a Stefani, F.D. | |
| 700 | 1 | |a Feldmann, J. | |
| 773 | 0 | |d 2010 |g v. 10 |h pp. 4794-4798 |k n. 12 |p Nano Lett. |x 15306984 |t Nano Letters | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650117290&doi=10.1021%2fnl1030425&partnerID=40&md5=e038d3f368f6b318a64f1b2b71e97f4b |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/nl1030425 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15306984_v10_n12_p4794_Urban |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v10_n12_p4794_Urban |y Registro en la Biblioteca Digital |
| 961 | |a paper_15306984_v10_n12_p4794_Urban |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 68347 | ||