Newton-Hensel interpolation lifting

The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power p k for any k, and its originality is that it is a mixed version that not only lifts the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Avendaño, M.
Otros Autores: Krick, T., Pacetti, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09099caa a22009137a 4500
001 PAPER-7328
003 AR-BaUEN
005 20230518203704.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-31944448714 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Avendaño, M. 
245 1 0 |a Newton-Hensel interpolation lifting 
260 |c 2006 
270 1 0 |m Avendaño, M.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón i Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: mavendar@bigua.dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Apostol, T., (1976) Introduction to Analytic Number Theory, , Undergraduate Texts in Mathematics, Springer-Verlag, New York 
504 |a Ben-Or, M., Tiwari, P., A deterministic algorithm for sparse multivariate polynomial interpolation. Extended abstract (1988) STOC, pp. 301-309 
504 |a Bürgisser, P., Clausen, M., Shokrollahi, M., (1997) Algebraic Complexity Theory, 317. , Springer 
504 |a Blum, L., Dicker, F., Shub, M., Smale, S., (1998) Complexity and Real Computation, , Springer-Verlag, New York 
504 |a Borodin, A., Tiwari, P., On the decidability of sparse univariate polynomial interpolation (1991) Comput. Complexity, 1, pp. 67-90 
504 |a (1988) STOC, pp. 301-309 
504 |a Carmichael, R., (1959) The Theory of Numbers, , Copyright 1914 and 1915 by R. Carmichael, Dover, New York 
504 |a Chistov, A., Factoring polynomials over a finite field and solution of systems of algebraic equations (Russian. English summary.) Theory of the complexity of computations, II (1984) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 137, pp. 124-188 
504 |a Chistov, A., Grigoriev, D., (1982) Polynomial Time Factoring of the Multivariate Polynomials over a Global Field, 39p. , Preprint LOMI E-5-82 
504 |a Chistov, A., Grigoriev, D., (1983) Subexponential-time Solving Systems of Algebraic Equations I, II, 119p. , Preprint LOMIE-9-83, E-10-83 
504 |a Clausen, M., Dress, A., Grabmeier, J., Karpinski, M., On zero-testing and interpolation of k-sparse multivariate polynomials over finite fields (1991) Theoret. Comput. Sci., 84, pp. 151-164 
504 |a Cucker, F., Smale, S., Complexity estimates depending on condition and round-off error (1999) J.A.C.M., 46, pp. 113-184 
504 |a Dedieu, J.-P., Shub, M., Newton's method for overdetermined systems of equations (2000) Math. Comp., 69, pp. 1099-1115 
504 |a Dress, A., Grabmeier, J., The interpolation problem for k-sparse polynomials and character sums (1991) Adv. in Appl. Math., 12, pp. 57-75 
504 |a Esmonde, J., Murty, M.R., (1999) Problems in Algebraic Number Theory, 190. , Graduate Texts in Mathematics, Springer-Verlag, New York 
504 |a Giusti, M., Hägele, K., Heintz, J., Morais, J.E., Pardo, L.M., Lower bounds for diophantine approximations (1997) J. Pure AppL Algebra, 117-118, pp. 277-317 
504 |a Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M., Straight-line programs in geometric elimination theory (1998) J. Pure AppL Algebra, 124, pp. 101-146 
504 |a Grigoriev, D., Factoring polynomials over a finite field and solution of systems of algebraic equations (Russian. English summary.) Theory of the complexity of computations, II (1984) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 137, pp. 20-79 
504 |a Grigoriev, D., Karpinski, M., Singer, M., Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields (1990) SIAM J. Comput., 19 (6), pp. 1059-1063 
504 |a Grigoriev, D., Karpinski, M., Singer, M., The interpolation problem for k-sparse sums of eigenfunctions of operators (1991) Adv. in Appl. Math., 12, pp. 76-81 
504 |a Grigoriev, D., Karpinski, M., Singer, M., Computational complexity of sparse rational function interpolation (1995) SIAM J. Comput., 23, pp. 1-11 
504 |a Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A., Deformation techniques for efficient polynomial equation solving (2000) J. Complexity, 16, pp. 70-109 
504 |a Jeronimo, G., Krick, T., Sabia, J., Sombra, M., The computational complexity of the Chow form (2004) Found. Comput. Math., 4, pp. 41-117 
504 |a Kaltofen, E., Polynomial-time reductions from multivariate to bi- And univariate integral polynomial factorization (1985) SIAM J. Comput., 14 (2), pp. 469-489 
504 |a Kaltofen, E., Lakshman, Y.N., Improved sparse multivariate polynomial interpolation algorithms, ISSAC'88 (1988) Proc. 1988 Internat. Symp. Symbolic Algebraic Comput., 358, pp. 467-474. , Lecture Notes in Comput. Sci. Springer-Verlag, New York 
504 |a Kaltofen, E., Lakshman, Y.N., Wiley, J.-M., Modular rational sparse multivariate polynomial interpolation, ISSAC'90 (1990) Proc. 1990 Internat. Symp. Symbolic Algebraic Comput., pp. 135-139. , S. Watanabe and M. Nagata, eds., ACM Press, New York 
504 |a Kaltofen, E., Lee, W.-S., Early termination in sparse interpolation algorithms (2003) J. Symbolic Comput., 40 
504 |a Kaltofen, E., Lobo, A., Lee, W.-S., Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm (2000) ISSAC'00, Proc. 2000 Internat. Symp. Symbolic Algebraic Comput., pp. 192-201. , C. Travero, ed., ACM Press, New York 
504 |a Lecerf, G., Quadratic Newton iteration for systems with multiplicity (2002) Found. Comput. Math., 2, pp. 247-293 
504 |a Lee, W.-S., (2001) Early Termination Strategies in Sparse Interpolation Algorithms, , Ph.D. Dissertation, North Carolina State University 
504 |a Lenstra, A.K., Lenstra, H.W., Lovász, L., Factoring polynomials with rational coefficients (1982) Math. Ann., 261, pp. 515-534 
504 |a (2004) PARI/GP, Version 2. 2. 8, , http://pari.math.u-bordeaux.fr/, Webpage 
504 |a Serre, J.-P., (1970) Cours D'Arith' Métique, , Presses Universitaires de France 
504 |a Shub, M., Smale, S., Complexity of Bezout's theorem V: Polynomial time (1994) Theoret. Comp. Sci., 133, pp. 141-164 
504 |a Smale, S., Newton's method estimates from data at one point (1986) The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, , R. Erwing, K. Gross, and C. Martin, eds.. Springer-Verlag, New York 
504 |a Smale, S., Mathematical problems for the next century (1998) Math. Intelligencer, 20, pp. 7-15 
504 |a Trinks, W., On improving approximate results of buchberger's algorithm by Newton's method (1985) Lecture Notes in Computer Science, 204, pp. 608-611. , Springer-Verlag, New York 
504 |a Winkler, F., A p-adic approach to the computation of Gröbner bases (1988) J. Symbolic Comput, 6, pp. 287-304 
504 |a Zassenhaus, H., On Hensel factorization I (1969) J. Number Theory, 1, pp. 291-311 
504 |a Zippel, R., Interpolating polynomials from their values (1990) J. Symbolic Comput., 9, pp. 375-403 
520 3 |a The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power p k for any k, and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton - Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p-adic integers ℤp. Finally, we apply our results to sparse polynomial interpolation in ℤ[x]. © 2005 SFoCM.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón i Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a NEWTON-HENSEL LIFTING 
690 1 0 |a P-ADIC INTEGERS 
690 1 0 |a SPARSE POLYNOMIAL INTERPOLATION 
690 1 0 |a GENERALIZED EQUATIONS 
690 1 0 |a HENSEL LIFTING 
690 1 0 |a NEWTON-HENSEL LIFTING 
690 1 0 |a P-ADIC INTEGERS 
690 1 0 |a PRIME NUMBER 
690 1 0 |a SPARSE POLYNOMIAL INTERPOLATIONS 
690 1 0 |a COMPUTATIONAL METHODS 
690 1 0 |a INTERPOLATION 
700 1 |a Krick, T. 
700 1 |a Pacetti, A. 
773 0 |d 2006  |g v. 6  |h pp. 81-120  |k n. 1  |p Found. Comput. Math.  |x 16153375  |t Foundations of Computational Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-31944448714&doi=10.1007%2fs10208-005-0172-3&partnerID=40&md5=89d4802fb4549fee2e73c1fdb90f7240  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10208-005-0172-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16153375_v6_n1_p81_Avendano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16153375_v6_n1_p81_Avendano  |y Registro en la Biblioteca Digital 
961 |a paper_16153375_v6_n1_p81_Avendano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68281