Regular Fredholm pairs

In this work it is introduced the notion of regular Fredholm pair, i.e. a Fredholm pair whose operators are regular. The main properties of these objects are studied, and what is more, they are entirely classified. Furthermore, the index of a Fredholm pair turns out to be an extremely useful tool in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boasso, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03411caa a22004217a 4500
001 PAPER-7295
003 AR-BaUEN
005 20230518203702.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33749584655 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Boasso, E. 
245 1 0 |a Regular Fredholm pairs 
260 |c 2006 
270 1 0 |m Boasso, E.; Departamento de Matemática, Facultad de Ciencias Exactas Y Naturales, Pabellón I, (1428) Buenos Aires, Argentina; email: eboasso@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albrecht, E., Vasilescu, F.-H., Stability of the index of a semi-Fredholm complex of Banach spaces (1986) J. Funct. Anal., 66, pp. 141-172 
504 |a Ambrozie, C.-G., On Fredholm index in Banach spaces (1996) Integral Equations Operator Theory, 25, pp. 1-34 
504 |a Ambrozie, C.-G., The Euler characteristic is stable under compact perturbations (1996) Proc. Amer. Math. Soc., 124, pp. 2041-2050 
504 |a Eschmeier, J., (1987) Analytic Spectral Mapping Theorems for Joint Spectra, 24, pp. 167-181. , Oper. Theory Adv. Appl., Birkhäuser Verlag, Basel 
504 |a Harte, R., (1988) Invertibility and Singularity for Bounded Linear Operators, , Marcel Dekker, Inc., New York-Basel 
504 |a Harte, R., Lee, W.Y., An index formula for chains (1995) Studia Math., 116, pp. 283-294 
504 |a Müller, V., Stability of index for semi-Fredholm chains (1997) J. Operator Theory, 37, pp. 247-261 
504 |a Putinar, M., Some invariants for semi-Fredholm systems of essentially commuting operators (1982) J. Operator Theory, 8, pp. 65-90 
504 |a Vasilescu, F.-H., Stability of the index of a complex of Banach spaces (1979) J. Operator Theory, 21, pp. 247-275 
504 |a Vasilescu, F.-H., (1984) Nonlinear Objects in the Linear Analysis, 14, pp. 265-278. , Oper. Theory Adv. Appl., Birkhäuser Verlag, Basel 
520 3 |a In this work it is introduced the notion of regular Fredholm pair, i.e. a Fredholm pair whose operators are regular. The main properties of these objects are studied, and what is more, they are entirely classified. Furthermore, the index of a Fredholm pair turns out to be an extremely useful tool in the description of the aforementioned objects. Finally, regular Fredholm pairs are characterized in terms of regular Fredholm symmetrical pairs, exact chains of multiplication operators, and invertible Banach space operators. © Copyright by Theta, 2006.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas Y Naturales, Pabellón I, (1428) Buenos Aires, Argentina 
690 1 0 |a FREDHOLM PAIRS 
690 1 0 |a INDEX 
690 1 0 |a REGULAR OPERATORS 
773 0 |d 2006  |g v. 55  |h pp. 311-337  |k n. 2  |p J. Oper. Theory  |x 03794024  |t Journal of Operator Theory 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749584655&partnerID=40&md5=c1beda611a4b262b47cca300ccd31180  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03794024_v55_n2_p311_Boasso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03794024_v55_n2_p311_Boasso  |y Registro en la Biblioteca Digital 
961 |a paper_03794024_v55_n2_p311_Boasso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68248