Characteristics of the surface layer above a row crop in the presence of local advection

In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensib...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Figuerola, P.I
Otros Autores: Berliner, P.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11682caa a22008657a 4500
001 PAPER-7244
003 AR-BaUEN
005 20230518203659.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33646391239 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Figuerola, P.I. 
245 1 0 |a Characteristics of the surface layer above a row crop in the presence of local advection 
260 |c 2006 
270 1 0 |m Figuerola, P.I.; Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: figuero1@at.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bradley, E.F., A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness (1968) Q. J. R. Meteorol. Soc., 94, pp. 361-379 
504 |a Blad, B.L., Rosenberg, N.J., Lysimetric calibrations of the Bowen ratio-energy balance method for evapotranspiration estimation in the central Great Plains (1974) J. Appl. Meteorol., 13, pp. 227-236 
504 |a Brutsaert, W.H., (1982) Evaporation Into the Atmosphere, p. 299. , Reidel, Dordrecht, Netherlands 
504 |a Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F., Flux-profile relationships in the atmospheric surface layer (1971) J. Atmos. Sci., 28, pp. 181-189 
504 |a Cellier, P., Brunet, Y., Flux-gradient relationships above tall plant canopies (1992) Agric. Forest Meteorol., 58, pp. 93-117 
504 |a Daamen, C.C., Dugas, W.A., Prendergast, P.T., Judd, M.J., McNaughton, K.G., Energy flux measurement in a sheltered lemon orchard (1999) Agric. Forest Meteorol., 93, pp. 171-183 
504 |a Dyer, A.J., Hicks, B.B., Flux-gradient relationships in the constant flux layer (1970) Q. J. R. Meteorol. Soc., 96, pp. 715-721 
504 |a Dyer, A.J., A review of flux-profile relationships (1974) Boundary-Layer Meteorol., 7, pp. 363-372 
504 |a Dyer, A.J., Crawford, T.V., Observations of climate at a leading edge (1965) Q. J. R. Meteorol. Soc., 91, pp. 345-348 
504 |a Elliott, W.P., The growth of the atmospheric internal boundary layer (1958) Trans. Amer. Geophys. Union, 39, pp. 1048-1054 
504 |a Figuerola, P.I., Mazzeo, N.A., Analytical model for predicting nocturnal and short after sunrise temperature of surface with near calm and cloudless sky (1997) Agric. Forest Meteorol., 85, pp. 229-237 
504 |a Figuerola, P.I., Berliner, P.R., Evapotranspiration under advective conditions (2005) Int. J. Biometeorol., 49 (6), pp. 403-416 
504 |a Ford, E.D., The Canopy of a scots pine forest: Description of a surface of complex roughness (1976) Agric. Forest Meteorol., 17, pp. 9-32 
504 |a Garrat, J.R., Comments on the paper "Analysis of flux-profile relationships above tall vegetationan alternative view"By B. B. Hicks, G. D. Hess and M. L. Weseley (1979) Q. J. R. Meteorol. Soc., 105, pp. 1079-1082 
504 |a Hebbar, S.S., Ramachandrappa, B.K., Nanjappa, H.V., Prabhakar, M., (2004) Europ. J. Agronomy, 21, pp. 117-127 
504 |a Hicks, B.B., Hess, G.D., Wesely, M.L., Analysis of flux-profile relationships above tall vegetation-an alternative view (1979) Q. J. R. Meteorol. Soc., 105, pp. 1074-1077 
504 |a Jacobs, A.F.G., Verhoef, N., Soil evaporation from sparse natural vegetation estimated from Sherwood numbers (1997) J. Hydrology, 188-189, pp. 443-452 
504 |a Jacobs, A.F.G., Boxel, J.H., El-Kilani, R.M., Nighttime free convection characteristics within a plant canopy (1994) Boundary-Layer Meteorol., 71, pp. 375-391 
504 |a Jegede, O.O., Foken, T., A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns (1999) Theor. Appl. Climatol., 62, pp. 31-41 
504 |a Kaimal, J.C., Finnigan, J.J., Atmospheric boundary layer flows, their structure and measurement (1994), p. 289. , Oxford. Univ. Press; Kroon, L.J.M., Bink, N.J., Conditional statistics of vertical heat fluxes in local advection conditions (1996) Boundary Layer Meteorol., 80, pp. 50-78 
504 |a Kustas, W.J., Bhaskar, B.J., Kunkel, K.E., Gay, L.L.W., Estimate of the aerodynamic roughness parameters over an incomplete canopy cover of cotton (1989) Agric. Forest Meteorol., 46, pp. 91-105 
504 |a Lee, X.Q.Y., Xiaomin, S., Jiandong, L., Qingwen, M., Yunfen, L., Zhang, X., Micrometeorological fluxes under the influence of regional and local advection: A revisit (2004) Agric. Forest Meteorol., 122, pp. 111-124 
504 |a Mahrt, L., Surface heterogeneity and vertical structure of the boundary layer (2000) Boundary-Layer Meteorol., 96, pp. 33-62 
504 |a Mayocchi, C.L., Bristow, K.L., Soil surface heat flux: Some general questions and comments on measurements (1995) Agric. Forest Meteorol., 975, pp. 43-50 
504 |a Monteith, J.L., Unsworth, M.H., (1990) Principles of Environmental Physics, p. 291. , 2nd ed. Edward Arnold, London 
504 |a Mulhearn, P.J., Relations between surface fluxes and mean profiles of velocity temperature, and concentration, downwind of a change in surface roughness (1977) Q. J. R. Meteorol. Soc., 103, pp. 785-802 
504 |a Panofsky, H.A., Re-analysis of Swinbank's Kerang observations: Flux of heat and momentum in the planetary boundary layer (1965), p. 224. , Rept., Dept. of Meteorology, Penn. State Univ; Paulson, C.A., The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer (1970) J. Appl. Meteorol., 9, pp. 857-861 
504 |a Pérez, P.J., Castellvi, F., Ibáñez, M., Rosell, J., Assessment of reliability of Bowen method for partitioning fluxes (1999) Agric. Forest Meteorol., 97, pp. 141-150 
504 |a Perrier, E.R., Robertson, J.M., Millington, R.J., Peters, D.B., Spatial and temporal variation of wind above and within a soybean canopy (1972) Agric. Forest Meteorol., 10, pp. 421-442 
504 |a Prueger, J.H., Hipps, L.E., Cooper, D.I., Evaporation and the development of the local boundary layer over an irrigated surface in an arid region (1996) Agric. Forest Meteorol., 78, pp. 223-237 
504 |a Rana, G., Katerji, N., Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review (2000) Europ. J. Agronomy., 13, pp. 125-153 
504 |a Raupach, M.R., Anomalies in flux-gradient relationships over forest (1979) Boundary-Layer Meteorol., 16, pp. 467-486 
504 |a Raupach, M.R., Rough-wall turbulent boundary layers (1991) Appl. Mech. Rev., 44, pp. 1-25 
504 |a Robinson, S.M., Computing wind profile parameters (1962) J. Atmos. Sci., 19, pp. 189-190 
504 |a Schween, J.H., Zelger, M., Wichura, B., Foken, T., Dlugi, R., Profiles and fluxes of micrometeorological parameters above and within the Mediterranean forest at Castelporziano (1997) Atm. Environ., 31, pp. 185-198 
504 |a Shuttleworth, W.J., Wallace, J.S., Evaporation from sparse crops-an energy combination theory (1985) Q. J. R. Meteorol. Soc., 111, pp. 839-855 
504 |a Stull, R.B., (1988) An Introduction to Boundary-layer Meteorology, p. 666. , Kluwer, Dordrecht 
504 |a Thom, A.S., Momentum, mass and heat exchange of plant communities vegetation and the atmosphere (1975) Vegetation and the Atmosphere, pp. 57-110. , (J. L. Montheit, Ed.) Academic Press, London 
504 |a Zangvil, A., Offer, Z., Osnat Mirón, I.A., Sasson, A., Klepach, D., (1991) Meteorological Analysis of the Shivta Region in the Negev, p. 202. , Desert Meteorology Papers, Series B No 1, Ben-Gurion University of the Negev. The Jacob Blaustein Inst 
504 |a Zelger, M., Schween, J., Reuder, J., Gori, T., Simmerl, K., Dlugi, R., Turbulent transport, characteristic length and time scales above and within the Bema forest site at Castelporziano (1997) Atm. Environment, 31, pp. 217-227 
520 3 |a In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensible heat generated over these areas may be advected to the irrigated fields. The crops are usually planted in rows and the irrigation systems used (trickle) do not wet the whole surface, the dry bare soil between the rows may develop high soil surface temperatures and lead to convective activity inside the canopy above the bare soil. Advection from the surrounding fields and convective activity inside the canopy affect the layer above the crop. We studied the surface layer above an irrigated tomato field planted in Israel's Negev desert. The crop was planted in rows, trickle irrigated and the distance between the outer edges of two adjacent rows was 0.36 m at the time of measurement. The gradients in temperature and water vapor pressure were obtained at various heights above the canopy using a Bowen ratio machine. The residual in the energy balance equation was used as a criterion to determine the equilibrium layer. During the morning, unstable conditions prevail, and the equilibrium layer was between Z/h ∼ 1.9 and 2.4. In some particular circumstances, in the late morning, the bare soil between the rows reached extremely high temperatures and during conditions with low wind speeds free convection was identified. During these hours the "residuals" of the energy budget to the heights Z/h = 1.5 and 2.4 were significantly different from zero and an extremely large variability was evident for the Z/h = 3.2 layer. Local advection took place during the afternoon resulting in an increase in the stability of the uppermost measured layer and propagated slowly downwards. The equilibrium layer was between Z/h ∼ 1.5 to 2.4. The residuals were significantly different from zero for the uppermost layers Z/h = 2.7 and 3.2 during these periods. Our findings suggest that the depth and location of the internal equilibrium layer above trickle irrigated row crop fields surrounded by dry bare areas, vary in response to wind speed and the temperature of the soil in between the rows of the crop. For some time intervals, the computation of fluxes using the conventional flux-gradient approach measurements was not possible.  |l eng 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel 
690 1 0 |a ADVECTION 
690 1 0 |a CONVECTION 
690 1 0 |a ROW CROP 
690 1 0 |a ADVECTION 
690 1 0 |a ARID REGION 
690 1 0 |a CROP 
690 1 0 |a SURFACE LAYER 
690 1 0 |a LYCOPERSICON ESCULENTUM 
700 1 |a Berliner, P.R. 
773 0 |d 2006  |g v. 19  |h pp. 75-108  |k n. 2  |p Atmosfera  |x 01876236  |w (AR-BaUEN)CENRE-1115  |t Atmosfera 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646391239&partnerID=40&md5=34713346dfbee2a48d3a7a2be24436e5  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01876236_v19_n2_p75_Figuerola  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola  |y Registro en la Biblioteca Digital 
961 |a paper_01876236_v19_n2_p75_Figuerola  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68197