Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study

We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, H, and the n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zunino, L.
Otros Autores: Pérez, D.G, Garavaglia, Mario José, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08426caa a22009257a 4500
001 PAPER-7179
003 AR-BaUEN
005 20250403084125.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33645143310 
030 |a PHYAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zunino, L. 
245 1 0 |a Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study 
260 |c 2006 
270 1 0 |m Zunino, L.; Centro de Investigaciones Ópticas (CIOp), CC. 124 Correo Central, 1900 La Plata, Argentina; email: lucianoz@ciop.unlp.edu.ar 
504 |a Zunino, L., Pérez, D.G., Rosso, O.A., Garavaglia, M., Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform (2004) Fractals, 12 (2), pp. 223-233 
504 |a Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., Wavelet entropy: A new tool for analysis of short duration brain electrical signals (2001) J. Neurosci. Method, 105, pp. 65-75 
504 |a Kolmogorov, A.N., Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, the Wiener spiral and some other interesting curves in a Hilbert space (1940) C. R. (Dokl.) Acad. Sci. USSR, 26, pp. 115-118 
504 |a Mandelbrot, B.B., Ness, J.W.V., Fractional Brownian motions, fractional noises and applications (1968) SIAM Rev., 4, pp. 422-437 
504 |a Peréz, A., D'Attellis, C.E., Rapacioli, M., Hirchoren, G.A., Flores, V., Analyzing blood cell concentration as a stochastic process (2001) IEEE Eng. Med. Biol., pp. 170-175 
504 |a Flandrin, P., On the spectrum of fractional Brownian motions (1989) IEEE Trans. Inf. Theory, IT-35 (1), pp. 197-199 
504 |a Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, IT-38 (2), pp. 910-917 
504 |a Tewfik, A.H., Kim, M., Correlation structure of the discrete wavelet coefficients of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, 38 (2), pp. 904-909 
504 |a Masry, E., The wavelet transform of stochastic processes with stationary increments and its applications to fractional Brownian motion (1993) IEEE Trans. Inf. Theory, IT-39 (1), pp. 260-264 
504 |a Abry, P., Veitch, D., Wavelet analysis of long-range dependent traffic (1998) IEEE Trans. Inf. Theory, 44 (1), pp. 2-15 
504 |a Soltani, S., Simard, P., Boichu, D., Estimation of the self-similarity parameter using the wavelet transform (2004) Signal Process., 84 (1), pp. 117-123 
504 |a Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, , K. Park W. Willinger Wiley New York 
504 |a Carbone, A., Castelli, G., Stanley, H.E., Time-dependent Hurst exponent in financial time series (2004) Physica A, 344 (1-2), pp. 267-271 
504 |a Cajueiro, D.O., Tabak, B.M., The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient (2004) Physica A, 336 (3-4), pp. 521-537 
504 |a Grech, D., Mazur, Z., Can one make any crash prediction in finance using the local Hurst exponent idea? (2004) Physica A, 336 (1-2), pp. 133-145 
504 |a Passoni, I., Rabal, H., Arizmendi, C.M., Characterizing dynamic speckle time series with the Hurst coefficient concept (2004) Fractals, 12 (3), pp. 319-329 
504 |a Peltier, R.F., Vehel, J.L., Multifractional Brownian motion: Definition and preliminary results (1995) Research Report, RR-2645. , INRIA 
504 |a Coeurjolly, J.-F., (2000) Statistical Inference for Fractional and Multifractional Brownian Motions, , http://bibliotheque.imag.fr/publications/theses/2000, Ph.D. Thesis, Laboratoire de Modélisation et Calcul-Institut d'Informatique el Mathématiques Appliquées de Grenoble 
504 |a Rosso, O.A., Mairal, M.L., Characterization of time dynamical evolution of electroencephalographic epileptic records (2002) Physica A, 312 (3-4), pp. 469-504 
504 |a Sello, S., Wavelet entropy as a measure of solar cycle complexity (2000) Astron. Astrophys., 363, pp. 311-315 
504 |a Sello, S., Wavelet entropy and the multi-peaked structure of solar cycle maximum (2003) New Astronomy, 8, pp. 105-117 
504 |a Passoni, I., Dai Pra, A., Rabal, H., Trivi, M., Arizaga, R., Dynamic speckle processing using wavelets based entropy (2005) Opt. Commun., 246 (1-3), pp. 219-228 
504 |a Pérez, D.G., Zunino, L., Garavaglia, M., Rosso, O.A., Wavelet entropy and fractional Brownian motion time series (2005) Physica A, , in press 
504 |a Unser, M., Spline: A perfect fit for signal and image processing (1999) IEEE Signal Process. Mag., 16, pp. 22-38 
504 |a Thévenaz, P., Blu, T., Unser, M., Interpolation revisited (2000) IEEE Trans. Med. Imaging, 19 (7), pp. 739-758 
504 |a Ayache, A., Lévy Véhel, J., On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion (2004) Stochastic Processes Appl., 111, pp. 119-156 
506 |2 openaire  |e Política editorial 
520 3 |a We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, H, and the normalized total wavelet entropy. The temporal evolution of both quantifiers, obtained from the laser spot data stream, is studied and compared. This allows us to extract information on the stochastic process associated with the turbulence dynamics. © 2005 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Pontificia Universidad Católica de Valparaíso 
536 |a Detalles de la financiación: Pontificia Universidad Católica de Valparaíso, 123.774/2004 
536 |a Detalles de la financiación: This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Pontificia Universidad Católica de Valparaíso (Project No. 123.774/2004, PUCV, Chile). 
593 |a Centro de Investigaciones Ópticas (CIOp), CC. 124 Correo Central, 1900 La Plata, Argentina 
593 |a Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 1900 La Plata, Argentina 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina 
690 1 0 |a HURST PARAMETER 
690 1 0 |a LIGHTWAVE PROPAGATION 
690 1 0 |a NORMALIZED TOTAL WAVELET ENTROPY 
690 1 0 |a TURBULENCE 
690 1 0 |a ENTROPY 
690 1 0 |a FRACTALS 
690 1 0 |a LASER BEAMS 
690 1 0 |a TURBULENCE 
690 1 0 |a WAVELET TRANSFORMS 
690 1 0 |a HURST PARAMETER 
690 1 0 |a LASER SPOT DATA 
690 1 0 |a LIGHTWAVE PROPAGATION 
690 1 0 |a NORMALIZED TOTAL WAVELET ENTROPY 
690 1 0 |a TURBULENCE DYNAMICS 
690 1 0 |a WAVELET ENTROPY 
690 1 0 |a WAVE PROPAGATION 
700 1 |a Pérez, D.G. 
700 1 |a Garavaglia, Mario José 
700 1 |a Rosso, O.A. 
773 0 |d 2006  |g v. 364  |h pp. 79-86  |p Phys A Stat Mech Appl  |x 03784371  |w (AR-BaUEN)CENRE-280  |t Physica A: Statistical Mechanics and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645143310&doi=10.1016%2fj.physa.2005.09.054&partnerID=40&md5=b71a39e6cb02a80be6817e8fceadfeb0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.physa.2005.09.054  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784371_v364_n_p79_Zunino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v364_n_p79_Zunino  |y Registro en la Biblioteca Digital 
961 |a paper_03784371_v364_n_p79_Zunino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68132