Periodic solutions for p-Laplacian like systems with delay

We study the existence of periodic solutions for a system involving p-Laplacian type operators with a fixed delay. We prove the existence of at least one periodic solution of the problem applying the Leray-Schauder degree theory. Copyright © 2006 Watam Press.

Guardado en:
Detalles Bibliográficos
Autor principal: Amster, P.
Otros Autores: De Nápoli, P., Mariani, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02896caa a22004217a 4500
001 PAPER-7156
003 AR-BaUEN
005 20230518203654.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33750408690 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Amster, P. 
245 1 0 |a Periodic solutions for p-Laplacian like systems with delay 
260 |c 2006 
270 1 0 |m Amster, P.; Depto. de Matemática, FCEyN, Univ. de Buenos Aires, C. Universitaria, Pab. I, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Amster, P., Mariani, M.C., Pinasco, D., Nonlinear periodic-type conditions for a second order ODE (2001) Nonlinear Studies, 8, p. 2 
504 |a Mawhin, J., Dinca, G., Jebelean, P., Variational and topological methods for Dirichlet problems with p-Laplacian (2001) Port. Math. (N.S.), 58 (3), pp. 339-378 
504 |a De Nápoli, P., Mariani, M.C., Equations of p-laplacian type in unbounded domains Advanced Nonlinear Studies, , To appear 
504 |a Gossez, J.-P., (1998) Some Remarks on the Antimaximum Principle. Revista de la Unión Matemática Argentina, 41 (1), pp. 79-84 
504 |a Manásevich, R., Mawhin, J., Periodic solutions for nonlinear systems with p-laplacian like operators (1998) J. Differential Equations, 145 (2). , May 20 
520 3 |a We study the existence of periodic solutions for a system involving p-Laplacian type operators with a fixed delay. We prove the existence of at least one periodic solution of the problem applying the Leray-Schauder degree theory. Copyright © 2006 Watam Press.  |l eng 
593 |a Depto. de Matemática, FCEyN, Univ. de Buenos Aires, C. Universitaria, Pab. I, 1428 Buenos Aires, Argentina 
593 |a CONICET, Argentina 
593 |a Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-0001, United States 
690 1 0 |a LERAY-SCHAUDER DEGREE 
690 1 0 |a P-LAPLACIAN 
690 1 0 |a PERIODIC SOLUTIONS 
690 1 0 |a SYSTEMS WITH DELAY 
700 1 |a De Nápoli, P. 
700 1 |a Mariani, M.C. 
773 0 |d 2006  |g v. 13  |h pp. 311-319  |k n. 3-4  |p Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal.  |x 12013390  |t Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750408690&partnerID=40&md5=4d64b10fd70b49a365a7291381d7b962  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_12013390_v13_n3-4_p311_Amster  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12013390_v13_n3-4_p311_Amster  |y Registro en la Biblioteca Digital 
961 |a paper_12013390_v13_n3-4_p311_Amster  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68109