Periodic solutions for p-Laplacian like systems with delay
We study the existence of periodic solutions for a system involving p-Laplacian type operators with a fixed delay. We prove the existence of at least one periodic solution of the problem applying the Leray-Schauder degree theory. Copyright © 2006 Watam Press.
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02896caa a22004217a 4500 | ||
|---|---|---|---|
| 001 | PAPER-7156 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203654.0 | ||
| 008 | 190411s2006 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-33750408690 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Amster, P. | |
| 245 | 1 | 0 | |a Periodic solutions for p-Laplacian like systems with delay |
| 260 | |c 2006 | ||
| 270 | 1 | 0 | |m Amster, P.; Depto. de Matemática, FCEyN, Univ. de Buenos Aires, C. Universitaria, Pab. I, 1428 Buenos Aires, Argentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Amster, P., Mariani, M.C., Pinasco, D., Nonlinear periodic-type conditions for a second order ODE (2001) Nonlinear Studies, 8, p. 2 | ||
| 504 | |a Mawhin, J., Dinca, G., Jebelean, P., Variational and topological methods for Dirichlet problems with p-Laplacian (2001) Port. Math. (N.S.), 58 (3), pp. 339-378 | ||
| 504 | |a De Nápoli, P., Mariani, M.C., Equations of p-laplacian type in unbounded domains Advanced Nonlinear Studies, , To appear | ||
| 504 | |a Gossez, J.-P., (1998) Some Remarks on the Antimaximum Principle. Revista de la Unión Matemática Argentina, 41 (1), pp. 79-84 | ||
| 504 | |a Manásevich, R., Mawhin, J., Periodic solutions for nonlinear systems with p-laplacian like operators (1998) J. Differential Equations, 145 (2). , May 20 | ||
| 520 | 3 | |a We study the existence of periodic solutions for a system involving p-Laplacian type operators with a fixed delay. We prove the existence of at least one periodic solution of the problem applying the Leray-Schauder degree theory. Copyright © 2006 Watam Press. |l eng | |
| 593 | |a Depto. de Matemática, FCEyN, Univ. de Buenos Aires, C. Universitaria, Pab. I, 1428 Buenos Aires, Argentina | ||
| 593 | |a CONICET, Argentina | ||
| 593 | |a Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-0001, United States | ||
| 690 | 1 | 0 | |a LERAY-SCHAUDER DEGREE |
| 690 | 1 | 0 | |a P-LAPLACIAN |
| 690 | 1 | 0 | |a PERIODIC SOLUTIONS |
| 690 | 1 | 0 | |a SYSTEMS WITH DELAY |
| 700 | 1 | |a De Nápoli, P. | |
| 700 | 1 | |a Mariani, M.C. | |
| 773 | 0 | |d 2006 |g v. 13 |h pp. 311-319 |k n. 3-4 |p Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal. |x 12013390 |t Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750408690&partnerID=40&md5=4d64b10fd70b49a365a7291381d7b962 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_12013390_v13_n3-4_p311_Amster |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12013390_v13_n3-4_p311_Amster |y Registro en la Biblioteca Digital |
| 961 | |a paper_12013390_v13_n3-4_p311_Amster |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 68109 | ||