Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: Temperature mean state and seasonal cycle in South America

Projections for South America of future climate change conditions in mean state and seasonal cycle for temperature during the twenty-first century are discussed. Our analysis includes one simulation of seven Atmospheric-Ocean Global Circulation Models, which participated in the Intergovernmental Pan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boulanger, J.-P
Otros Autores: Martinez, F., Segura, E.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09940caa a22007097a 4500
001 PAPER-7064
003 AR-BaUEN
005 20230518203648.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33744770022 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Boulanger, J.-P. 
245 1 0 |a Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: Temperature mean state and seasonal cycle in South America 
260 |c 2006 
270 1 0 |m Boulanger, J.-P.; Tour 45-55/Etage 4/Case 100 UPMC, LODYC, UMR CNRS/IRD/UPMC, 4 Place Jussieu, 75252 Paris Cedex 05, France; email: jpb@lodyc.jussieu.fr 
506 |2 openaire  |e Política editorial 
504 |a Allen, M.R., Stott, P.A., Mitchell, J.F.B., Schnur, R., Delworth, T.L., Quantifying the uncertainty in forecasts of anthropogenic climate change (2000) Nature, 407, pp. 617-620 
504 |a Boulanger, J.-P., Leloup, J., Penalba, O., Rusticucci, M., Lafon, F., Vargas, W., Low-frequency modes of observed precipitation variability over the La Plata basin (2005) Clim Dyn, 24, pp. 393-413. , DOI 10.1007/s00382-004-0514-x 
504 |a Coelho, C.A.S., Pezzulli, S., Balmaseda, M., Oblas-Reyes, F.J.D., Stephenson, D.B., Forecast calibration and combination: A simple Bayesian approach for ENSO (2004) J Clim, 17, pp. 1504-1516 
504 |a Collins, W.D., The community climate system model, version 3 (2005) J Clim, , (in press) 
504 |a Degallier, N., Favier, C., Boulanger, J.-P., Menkes, C., Oliveira, C., Rubens Costa Lima, J., Mondet, B., (2005) Early Determination of the Reproductive Number for Vector-borne Diseases: The Case of Dengue in Brazil, , (in press) 
504 |a Delworth, GFDL's CM2 global coupled climate models - Part 1: Formulation and simulation characteristics (2005) J Clim, , (in press) 
504 |a Forest, C.E., Stone, P.H., Sokolov, A.P., Allen, M.R., Webster, M.D., Quantifying uncertainties in climate system properties with the use of recent climate observations (2002) Science, 295, pp. 113-117 
504 |a Giorgi, F., Mearns, L.O., Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method (2002) J Clim, 15 (10), pp. 1141-1158 
504 |a Giorgi, F., Regional climate information: Evaluation and projections (2001) Climate Change 2001: The Scientific Basis, pp. 583-638. , Houghton JT et al (eds) Contribution of working group I to the 3rd assessment report of the intergovenmental panel on climate change, Chap 10. Cambridge University Press, Cambridge 
504 |a Gnanadesikan, (2005) GFDL's CM2 Global Coupled Climate Models - Part 2: The Baseline Ocean Simulation, , (in press) 
504 |a Gordon, C., Cooper, C., Senior, C.A., Banks, H.T., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., Wood, R.A., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments (2000) Clim Dyn, 16, pp. 147-168 
504 |a Haak, H., Formation and propagation of great salinity anomalies (2003) Geophys Res Lett, 30, p. 1473. , DOI 10.1029/2003GL17065 
504 |a Johns, T.C., Carnell, R.E., Crossley, J.F., Gregory, J.M., Mitchell, J.F.B., Senior, C.A., Tett, S.F.B., Wood, R.A., The second hadley centre coupled ocean-atmosphere GCM: Model description, spinup and validation (1997) Clim Dyn, 13, pp. 103-134 
504 |a Jones, P.D., Moberg, A., Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001 (2003) J Clim, 16, pp. 206-223 
504 |a MacKay, D.J.C., Bayesian interpolation (1992) Neural Comput, 4, pp. 415-447 
504 |a Marsland, The Max-Planck-Institute global ocean/sea ice modelwith orthogonal curvelinear coordinates (2003) Ocean Model, 5, pp. 91-127 
504 |a Nabney, I.T., Netlab. Algorithms for pattern recognition. Advances in Pattern Recognition (2002), p. 420. , Springer, Berlin Heidelberg New York; Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Dadi, Z., (2000) IPCC Special Report on Emissions Scenarios, p. 599. , Cambridge University Press, Cambridge 
504 |a New, M.G., Hulme, M., Jones, P.D., Representing twentieth-century space-time climate variability. Part II: Development of 1901-1996 monthly grids of terrestrial surface climate (2000) J Clim, 13, pp. 2217-2238 
504 |a Reilly, J., Stone, P.H., Forest, C.E., Webster, M.D., Jacoby, H.D., Prinn, R.G., Uncertainty in climate change assessments (2001) Science, 293 (5529), pp. 430-433 
504 |a Roeckner, The atmospheric general circulation model ECHAM5 Report No. 349OM (2003); Ruosteenoja, K., Carter, T.R., Jylhä, K., Tuomenvirta, H., Future climate in world regions: An intercomparison of model-based projections for the new IPCC emissions scenarios (2003), p. 83. , The Finnish Environment 644. Finnish Environment Institute; Salas-Mélia, D., Chauvin, F., Déqué, M., Douville, H., Gueremy, J.F., Marquet, P., Planton, S., Tyteca, S., XXth century warming simulated by ARPEGE-Climat-OPA coupled system (2004); Stouffer, (2005) GFDL's CM2 Global Coupled Climate Models - Part 4: Idealized Climate Response, , (in press) 
504 |a Tebaldi, C., Smith, R.L., Nychka, D., Mearns, L.O., (2005) Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multi-model Ensembles, , (in press) 
504 |a Wigley, T.M.L., Raper, S.C.B., Interpretation of high projections for global-mean warming (2001) Science, 293, pp. 451-454 
504 |a Wittenberg, (2005) GFDL's CM2 Global Coupled Climate Models - Part 3: Tropical Pacific Climate and ENSO, , (in press) 
520 3 |a Projections for South America of future climate change conditions in mean state and seasonal cycle for temperature during the twenty-first century are discussed. Our analysis includes one simulation of seven Atmospheric-Ocean Global Circulation Models, which participated in the Intergovernmental Panel on Climate Change Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three Special Report on Emissions Scenarios (SRES) A2, A1B, and B1. We developed a statistical method based on neural networks and Bayesian statistics to evaluate the models' skills in simulating late twentieth century temperature over continental areas. Some criteria [model weight indices (MWIs)] are computed allowing comparing over such large regions how each model captures the temperature large scale structures and contributes to the multi-model combination. As the study demonstrates, the use of neural networks, optimized by Bayesian statistics, leads to two major results. First, the MWIs can be interpreted as optimal weights for a linear combination of the climate models. Second, the comparison between the neural network projection of twenty-first century conditions and a linear combination of such conditions allows the identification of the regions, which will most probably change, according to model biases and model ensemble variance. Model simulations in the southern tip of South America and along the Chilean and Peruvian coasts or in the northern coasts of South America (Venezuela, Guiana) are particularly poor. Overall, our results present an upper bound of potential temperature warming for each scenario. Spatially, in SRES A2, our major findings are that Tropical South America could warm up by about 4°C, while southern South America (SSA) would also undergo a near 2-3°C average warming. Interestingly, this annual mean temperature trend is modulated by the seasonal cycle in a contrasted way according to the regions. In SSA, the amplitude of the seasonal cycle tends to increase, while in northern South America, the amplitude of the seasonal cycle would be reduced leading to much milder winters. We show that all the scenarios have similar patterns and only differ in amplitude. SRES A1B differ from SRES A2 mainly for the late twenty-first century, reaching more or less an 80-90% amplitude compared to SRES A2. SRES B1, however, diverges from the other scenarios as soon as 2025. For the late twenty-first century, SRES B1 displays amplitudes, which are about half those of SRES A2. © Springer-Verlag 2006.  |l eng 
593 |a Tour 45-55/Etage 4/Case 100 UPMC, LODYC, UMR CNRS/IRD/UPMC, 4 Place Jussieu, 75252 Paris Cedex 05, France 
593 |a Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ARTIFICIAL NEURAL NETWORK 
690 1 0 |a ATMOSPHERE-OCEAN COUPLING 
690 1 0 |a ATMOSPHERIC GENERAL CIRCULATION MODEL 
690 1 0 |a BAYESIAN ANALYSIS 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a CLIMATE PREDICTION 
690 1 0 |a OCEANIC GENERAL CIRCULATION MODEL 
690 1 0 |a SIMULATION 
651 4 |a SOUTH AMERICA 
700 1 |a Martinez, F. 
700 1 |a Segura, E.C. 
773 0 |d 2006  |g v. 27  |h pp. 233-259  |k n. 2-3  |p Clim. Dyn.  |x 09307575  |w (AR-BaUEN)CENRE-567  |t Climate Dynamics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744770022&doi=10.1007%2fs00382-006-0134-8&partnerID=40&md5=832912523e31f068fbe2e3ec96249d1c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00382-006-0134-8  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09307575_v27_n2-3_p233_Boulanger  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v27_n2-3_p233_Boulanger  |y Registro en la Biblioteca Digital 
961 |a paper_09307575_v27_n2-3_p233_Boulanger  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68017