Hypoxia-induced cell death and activation of pro- and anti-apoptotic proteins in developing chick optic lobe

Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vacotto, M.
Otros Autores: Paz, D., De Plazas, S.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11671caa a22011897a 4500
001 PAPER-7047
003 AR-BaUEN
005 20230518203646.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33748152330 
024 7 |2 cas  |a caspase 3, 169592-56-7; caspase 9, 180189-96-2; protein bcl 2, 219306-68-0; Apoptosis Regulatory Proteins; Caspase 3, 3.4.22.-; Caspase 9, 3.4.22.-; Proto-Oncogene Proteins c-bcl-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NERED 
100 1 |a Vacotto, M. 
245 1 0 |a Hypoxia-induced cell death and activation of pro- and anti-apoptotic proteins in developing chick optic lobe 
260 |c 2006 
270 1 0 |m De Plazas, S.F.; Facultad de Medicina, Instituto de Biología Celular Y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina; email: sfiszer@fmed.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Oppenheim, R.W., Cell death during development of the nervous system (1991) Annu Rev Neurosci, 14, pp. 453-501 
504 |a Raff, M.C., Barres, B.A., Burne, J.F., Coles, H.S., Ishizaki, Y., Jaconson, M.D., Programmed cell death and the control of cell survival: Lesson from the nervous system (1993) Science, 262, pp. 695-700 
504 |a Narayanan, V., Apoptosis in development and disease of the nervous system: 1. Naturally occurring cell death in the developing nervous system (1997) Pediatr Neurol, 16, pp. 9-13 
504 |a Kuan, C.Y., Roth, K.A., Flavell, R.A., Rakic, P., Mechanisms of programmed cell death in the developing brain (2000) Trends Neuorosci, 23, pp. 291-297 
504 |a Korsmeyer, S.J., BCL-2 gene family and the regulation of programmed cell death (1999) Cancer Res, 59, pp. S1693-S1700 
504 |a Abedin, N., Ashraf, Q., Prakash Mishra, O., Delivoria-Papadopoulos, M., Effect of hypoxia on the expression of proand anti-apoptotic proteins in neuronal nuclei of the guinea pig fetus during gestation (2005) Brain Res Dev Brain Res, 156, pp. 32-37 
504 |a Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Wang, X., Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked (1997) Science, 275, pp. 1129-1132 
504 |a Thornberry, N.A., Lazebnik, Y., Caspases: Enemies within (1998) Science, 281, pp. 1312-1316 
504 |a Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahamad, M., Alnemri, E.S., Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade (1997) Cell, 91, pp. 479-489 
504 |a Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y., Taya, C., Karasuyama, H., Su, M.S., Flavell, R.A., Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 (1998) Cell, 94, pp. 325-337 
504 |a Bossenmeyer-Pourie, C., Daval, J.L., Prevention from hypoxia-induced apoptosis by pre-conditioning: A mechanistic approach in cultured neurons from fetal rat forebrain (1998) Brain Res Mol Brain Res, 58, pp. 237-239 
504 |a Cao, G., Minami, M., Pei, W., Yan, C., Chen, D., O'Horo, C., Graham, S.H., Chen, J., Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death (2001) J Cereb Blood Flow Metab, 21, pp. 321-333 
504 |a Khurana, P., Ashraf, Q.M., Mishra, O.P., Delivoria-Papadoupoulos, M., Effect of hypoxia on caspase-3, -8, and -9 activity and expression in the cerebral cortex of newborn piglets (2002) Neurochem Res, 27, pp. 931-938 
504 |a Zhu, C., Wang, X., Hagberg, H., Blomgren, K., Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia (2000) J Neurochem, 75, pp. 819-829 
504 |a Hu, B.R., Liu, C.L., Ouyang, Y., Blomgren, K., Siesjö, B., Involvement of caspase-3 in cell death after hypoxemia-ischemia declines during brain maturation (2000) J Cereb Blood Flow Metab, 20, pp. 1294-1300 
504 |a Kelly, F.J., Free radical disorders of preterm infants (1993) Br Med Bull, 49, pp. 668-678 
504 |a Vacotto, M., Rodrígez Gil, D.J., Mitridate De Novara, A., Fiszer De Plazas, S., Differential and irreversible CNS ontogenic reduction in maximal MK-801 binding site number in the NMDA receptor after acute hypoxic hypoxia (2003) Brain Res, 976, pp. 202-208 
504 |a Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation (1992) J Cell Biol, 119, pp. 493-501 
504 |a Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, P.J., Protein measurement with Folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275 
504 |a Rego, A.C., Santos, M.S., Oliveira, C.R., Oxidative stress, hypoxia, and ischemia-like conditions increase the release of endogenous amino acids by distinct mechanisms in cultured retinal cells (1996) J Neurochem, 66, pp. 2506-2516 
504 |a Saransaari, P., Oja, S.S., Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions (1998) Neurochem Res, 23, pp. 563-570 
504 |a Dirnagal, U., Iadecola, C., Moskowitz, M.A., Pathobiology of ischaemic strke: An integrated view (1999) Trends Neurosci, 22, pp. 391-397 
504 |a Walton, M., Sirimanne, E., Reutelingsperger, C., Williams, C., Gluckman, P., Dragunow, M., Annexin V labels apoptotic neurons following hypoxia-ischemia (1997) NeuroReport, 8, pp. 3871-3875 
504 |a Fukuda, T., Wang, H., Nakanishi, H., Yamamoto, K., Kosaka, T., Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia (1999) Neurosci Res, 33, pp. 49-55 
504 |a Johnston, M.V., Selective vulnerability in the neonatal brain (1998) Ann Neurol, 44, pp. 155-156 
504 |a Johnston, M.V., Nakajima, W., Hagberg, H., Mechanisms of hypoxic neurodegeneration in the developing brain (2002) Neuroscientist, 8, pp. 212-220 
504 |a Vannucci, S.J., Harberg, H., Hypoxia-ischemia in the immature brain (2004) J Exp Biol, 207, pp. 3149-3154 
504 |a Baumann, R., Haller, E.A., Schoning, U., Weber, M., Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells (1986) Dev Biol, 116, pp. 548-551 
504 |a Million, D., Zillner, P., Baumann, R., Oxygen pressure-dependent control of carbonic anhydrase synthesis in chick embryonic erythrocytes (1991) Am J Physiol, 261, pp. 1188-1196 
504 |a Graham, S.H., Chen, J., Programmed cell death in cerebral ischemia (2001) J Cereb Blood Flow Metab, 21, pp. 99-109 
504 |a Chen, Y., Ginis, I., Hallenbeck, J.M., The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells (2001) J Cereb Blood Flow Metab, 21, pp. 34-40 
504 |a Kaufmann, J.A., Perez, M., Zhang, W., Bickford, P.C., Holmes, D.B., Taglialatela, G., Free radical-dependent nuclear localization of Bcl-2 in the central nervous system of aged rats is not associated with Bcl-2-mediated protection from apoptosis (2003) J Neurochem, 81, pp. 981-994 
504 |a Kelly, S., Zhao, H., Sun, G.H., Cheng, D., Qiao, Y., Luo, J., Martin, K., Yenari, M.A., Glycogen synthase kinase 3β inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia (2004) Exp Neurol, 188, pp. 378-386 
504 |a Wu, C., Fujihara, H., Yao, J., Qi, S., Li, H., Shimoji, K., Baba, H., Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum (2003) Stroke, 34, pp. 1803-1808 
520 3 |a Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development. © Springer Science+Business Media, Inc. 2006.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Acknowledgments This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires. Authors thank, Lic. Valentina Sorzzoni, Dr. Silvia Trejo and Alba Mitridate de Novara for histological technical assistance and Damián Vacotto for assistance with illustrations. 
593 |a Facultad de Medicina, Instituto de Biología Celular Y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas Y Naturales, Departamento de Biodiversidad Y Biología Experimental, Universidad de Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina 
690 1 0 |a APOPTOSIS 
690 1 0 |a CASPASE-3 
690 1 0 |a CHICK OPTIC LOBE 
690 1 0 |a CNS DEVELOPMENT 
690 1 0 |a HYPOXIA 
690 1 0 |a PROGRAMMED CELL DEATH 
690 1 0 |a CASPASE 3 
690 1 0 |a CASPASE 9 
690 1 0 |a PROTEIN BCL 2 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a BRAIN DEVELOPMENT 
690 1 0 |a BRAIN HYPOXIA 
690 1 0 |a CHICK EMBRYO 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a EMBRYO 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a NERVE CELL NECROSIS 
690 1 0 |a NICK END LABELING 
690 1 0 |a NONHUMAN 
690 1 0 |a OPTIC LOBE 
690 1 0 |a PRENATAL EXPOSURE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a ANIMALS 
690 1 0 |a ANOXIA 
690 1 0 |a APOPTOSIS 
690 1 0 |a APOPTOSIS REGULATORY PROTEINS 
690 1 0 |a CASPASE 3 
690 1 0 |a CASPASE 9 
690 1 0 |a CHICK EMBRYO 
690 1 0 |a IN SITU NICK-END LABELING 
690 1 0 |a OPTIC LOBE 
690 1 0 |a OPTIC LOBE, NONMAMMALIAN 
690 1 0 |a PROTO-ONCOGENE PROTEINS C-BCL-2 
700 1 |a Paz, D. 
700 1 |a De Plazas, S.F. 
773 0 |d 2006  |g v. 31  |h pp. 1003-1009  |k n. 8  |p Neurochem. Res.  |x 03643190  |t Neurochemical Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748152330&doi=10.1007%2fs11064-006-9106-y&partnerID=40&md5=170fae818e0c0943302a16ec7d764017  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11064-006-9106-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03643190_v31_n8_p1003_Vacotto  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03643190_v31_n8_p1003_Vacotto  |y Registro en la Biblioteca Digital 
961 |a paper_03643190_v31_n8_p1003_Vacotto  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68000